

Event-Database
Architecture for

Computer Games

Event-Database Architecture for Computer Games proposes the first explicit soft-
ware architecture for game development, answering the problem of building mod-
ern computer games with little or no game design. In this volume, an example of a
practical production process based on the software production process is explained,
including examples of the game design, technical design, data design and tools
design in that process.

This volume includes a brief overview on how to optimise the results. This leads on
to an exploration of how staff, especially Software Engineers, typically view opti-
misation. It also explains how the vision of the Engineers relates to the vision of the
leadership of a project or company. It describes how this leadership can also affect the
efficacy of a production process, including the Event-Database Production Process.

This book will be of great interest to professional game developers involved in
management roles such as Technical Directors and Game Producers and technical
roles, such as Tools Programmers, UI Programmers, Gameplay Programmers and
Engineers, as well as students studying game development and programming.

Rodney Quaye is Senior Software Development Engineer in Test at Build A Rocket
Boy. He has worked in the Computer Games industry for over 16 years. He has
worked at several Games Studios, including Sumo Digital, nDreams, Supermassive
Games, Traveller’s Tales, Hotgen, Oysterworld, Second Impact, Flaming Pumpkin,
Goldhawk Interactive, Jagex, Gusto Games, Criterion, Asylum Entertainment,
Codemasters and Deibus Studios. The famous titles he has worked on include
Burnout 2 and 3 for Criterion, LMA Manager for Codemasters, Runescape for Jagex,
Lego Worlds for Traveller’s Tales and Everywhere for Build A Rocket Boy.

https://taylorandfrancis.com

Event-Database
Architecture for

Computer Games
Volume 2, Game Design and

the Nature of the Beast

Rodney Quaye

https://www.crcpress.com

Designed cover image: Shutterstock

First edition published 2026
by CRC Press
2385 NW Executive Center Drive, Suite 320, Boca Raton FL 33431

and by CRC Press
4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2026 Rodney Quaye

Reasonable efforts have been made to publish reliable data and information, but the author and pub-
lisher cannot assume responsibility for the validity of all materials or the consequences of their use.
The authors and publishers have attempted to trace the copyright holders of all material reproduced in
this publication and apologize to copyright holders if permission to publish in this form has not been
obtained. If any copyright material has not been acknowledged please write and let us know so we may
rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or here-
after invented, including photocopying, microfilming, and recording, or in any information storage or
retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, access www.copyright.com
or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-
750-8400. For works that are not available on CCC please contact mpkbookspermissions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks and are
used only for identification and explanation without intent to infringe.

ISBN: 9781032820699 (hbk)
ISBN: 9781032818078 (pbk)
ISBN: 9781003502807 (ebk)

DOI: 10.1201/9781003502807

Typeset in Times
by KnowledgeWorks Global Ltd.

Access the Support Materials: www.routledge.com/9781032818078

https://www.copyright.com
mailto:mpkbookspermissions@tandf.co.uk
https://doi.org/10.1201/9781003502807
https://www.routledge.com/9781032818078

v

Contents
About the Author...ix
Introduction..xi

Chapter 1	 LPmud Software Production Process..1

1.1	 STEP 1: LPmud Feasibility Study/Vertical Slice.......................2
1.2	 STEP 2: LPmud Game Design...4

1.2.1	 Settlements..5
1.2.2	 Buildings...6
1.2.3	 Mountainous Landscapes..8
1.2.4	 Treacherous Landscapes...8
1.2.5	 Non-Player Characters.. 11
1.2.6	 Player Characters... 12
1.2.7	 Creatures... 17
1.2.8	 Treasures... 18
1.2.9	 Combat System.. 21

1.3	 STEP 3: LPmud Technical Design...23
1.3.1	 Rules for Generating the System of Events.................34
1.3.2	 Rules for Generating the System of

Game Objects.. 38
1.3.3	 Application: Visible and Invisible LPmud

Game Objects.. 41
1.3.4	 Application: AI with Path Finding.............................. 47
1.3.5	 Application: AI with Neural Networks.......................50
1.3.6	 Application: Physics.. 67
1.3.7	 Application: Graphics...77
1.3.8	 Application: Procedurally Generated Quests............ 103

1.4	 STEP 4: LPmud Data Design... 106
1.4.1	 Primary Events Table.. 107
1.4.2	 Secondary Events Table.. 108
1.4.3	 Sound Speaker Secondary Events Table................... 110
1.4.4	 Priority Events Table... 111
1.4.5	 Events History Table... 111
1.4.6	 2D Polygons Table... 114
1.4.7	 3D Models Table... 114
1.4.8	 Textures Table... 114
1.4.9	 Texture Coordinates or UV Table............................. 116
1.4.10	 Materials Table.. 117
1.4.11	 Projected Shapes Table.. 118
1.4.12	 Sound Microphone Table.. 120
1.4.13	 Sound Stream Table.. 120
1.4.14	 Animated Vertices Table... 120

vi Contents

1.4.15	 Game Time Table.. 121
1.4.16	 Delayed Events Table.. 122
1.4.17	 Residents or Loaded Records Table.......................... 123
1.4.18	 Absents or Unloaded Records Table......................... 123
1.4.19	 Objects Loaded Table..124
1.4.20	 2D Graphics Lists Table.. 125
1.4.21	 3D Graphics Lists Table.. 125
1.4.22	 Projected Lists Table... 125
1.4.23	 Sounds List Table.. 126
1.4.24	 2D Physics Lists Table... 126
1.4.25	 3D Physics Lists Table... 127
1.4.26	 2D Camera Lists Table.. 127
1.4.27	 3D Camera Lists Table.. 128
1.4.28	 Device Group Table... 129
1.4.29	 Device Sequence Primary Events Table................... 129
1.4.30	 Text Localisations Table.. 129
1.4.31	 Errors Table... 131
1.4.32	 Invisible 2D Point Objects Table............................... 131
1.4.33	 Invisible 3D Point Objects Table............................... 133
1.4.34	 Master Object Table.. 133
1.4.35	 Text Objects Table... 135
1.4.36	 2D Image Objects Table.. 138
1.4.37	 2D Animation Objects Table..................................... 140
1.4.38	 2D Player Objects Table.. 143
1.4.39	 3D Image Objects Table.. 144
1.4.40	 3D Animation Objects Table..................................... 146
1.4.41	 3D Player Objects Table.. 148
1.4.42	 2D Camera Objects Table... 151
1.4.43	 3D Camera Objects Table.. 155
1.4.44	 Database Checksum Table.. 158
1.4.45	 Database Tag Table... 162
1.4.46	 Database Monitor Table.. 163
1.4.47	 Database Log Table... 163
1.4.48	 Visualising the Database... 164
1.4.49	 Enumerating the Language of the Production

Process... 169
1.5	 STEP 5: LPmud Tools Design.. 180

Chapter 2	 Consistent Data Design... 187

Chapter 3	 Optimising the Results.. 191

3.1	 Forward Engineers and Reverse Engineers............................ 198
3.2	 Diagnosis and Prognosis..206
3.3	 The Didactic and the Dialectic... 215

viiContents

3.4	 Software Artists and Software Engineers.............................. 218
3.5	 Obsession with Efficiency..224
3.6	 Division and Consistency...225
3.7	 The Myth of Self-Documenting Code and Data.................... 232
3.8	 Self-Documenting User Manuals... 236
3.9	 Self-Explanatory Names... 239
3.10	 Self-Checking Data.. 241
3.11	 Natural Language and Programming Language....................246

Chapter 4	 The Nature of the Beast..256

4.1	 The Marriage of the Beast.. 271
4.2	 The Time of the Beast.. 276
4.3	 The Temple of the Beast...284

4.3.1	 Tacit Approval and Disavowal..................................285
4.3.2	 Explicit Approval in Performance Reviews

or Appraisals...288
4.3.3	 Self-Justification through the Benefits......................288
4.3.4	 Explicit Disavowal in Performance Reviews

or Appraisals...290
4.3.5	 Self Incrimination in Self-Appraisals.......................292
4.3.6	 The Right to Silence..294
4.3.7	 Human Resource and Human Beings.......................296
4.3.8	 Unions and Performance Reviews or

Appraisals..297
4.3.9	 Natural Leadership: A Manager of Processes...........297
4.3.10	 Unnatural Leadership: A Manager of Defects..........299

Chapter 5	 Cause and Effect...302

Chapter 6	 Glossary...308

Index... 339

https://taylorandfrancis.com

ix

About the Author
Rodney Quaye is Senior Programmer who has worked in the Computer Games indus-
try for over 16 years. He was born in the UK but grew up in his fatherland, Ghana,
attending primary school there. He returned to the UK to attend secondary school.
He grew up playing Computer Games at school and university but never thought
of it as a career. He graduated from the University of Warwick with a Bachelor of
Engineering degree in Computer Systems Engineering in 1993. He went to work as
a programmer first on medical information systems for hospitals and then market
analysis systems, mainly for car manufacturers. He then had a near-death experi-
ence which gave him a spiritual awakening. He reflected on his life and realised
that his heart was not in his work. He felt God was calling him back to his first love,
Computer Games. So he started a career in that industry in 1999, working at several
Games Studios, including Sumo Digital, nDreams, Supermassive Games, Traveller’s
Tales, Hotgen, Oysterworld, Second Impact, Flaming Pumpkin, Goldhawk
Interactive, Jagex, Gusto Games, Criterion, Asylum Entertainment, Codemasters
and Deibus Studios. The famous titles he has worked on include Burnout 2 and 3 for
Criterion, LMA Manager for Codemasters, Runescape for Jagex and Lego Worlds
for Traveller’s Tales. He wrote this book to help others get into the development of
Computer Games.

https://taylorandfrancis.com

xi

Introduction
In previous volume in the series,

Event-Database Architecture for Computer Games: Volume 1, Software
Architecture and the Software Production Process,

the problem of building modern computer games with little or no game design was
introduced, along with a software architecture for solving this problem. An arche-
typal software production process, based on this architecture, was also explained.

In this volume in this series,
Event-Database Architecture for Computer Games: Volume 2, Game Design

and the Nature of the Beast,
an example of a practical production process based on the software production

process will be explained. This will include an example of the game design, techni-
cal design, data design and tools design in that process.

This volume will also include a brief introduction about how to optimise the
results. This leads on to how staff, especially Software Engineers involved in com-
puter games, typically view optimisation. And this leads on to how Engineers fall
basically in two schools of thoughts. One school views software production as an
art. The other views software production as a science. These competing visions can
effect the efficacy of a production process, including the Event-Database Production
Process.

This volume will also explain how the vision of the Engineers relates to the
vision of the leadership of a project or company. It will describe how this leadership
can also effect the efficacy of a production process, including the Event-Database
Production Process.

There is a glossary of terms and list of references in the final volume in the series.

https://taylorandfrancis.com

1DOI: 10.1201/9781003502807-1

1 LPmud Software
Production Process

This game, LPmud,1 is designed to be played by millions of players around the
world, and to be available 24 hours a day. The players will be able to log in and
play cooperatively, or competitively with other players, for as long as they like.
And after they have had enough they can log out and rejoin at a later date to con-
tinue their adventures. It will allow the players to not only take part in adventures
in this world, but contribute to the development of new ones once their characters
reach their highest level. At that point the players will become ‘wizards’ and
‘gods’ in this world, and be able to build new adventures or extend old adventures
for the next generation of players to enjoy. The game will be available for multiple
platforms including PCs, game consoles and Mobile Phones. The game will be
developed for the target platforms using an Event-Database Production Process
based on the Event-Database Architecture. You can see this vision for the game
in the cover page in Figure 1.0.

FIGURE 1.0  An example of a cover page for a document to pitch a project to build a com-
puter game LPmud.

https://doi.org/10.1201/9781003502807-1

2 Event-Database Architecture for Computer Games

To summarise, the Event-Database Production Process has four advantages
over a normal Software Evolution Process.

Firstly, when there is a new change to the requirements of the game design,
the Software Evolution Process produces a new set of game modules, Game data
and Abstract data to meet those requirements. The Event-Database Production
Process produces a new set of Primary Events, Secondary Events, Game Objects,
Database Tables, Database Records and Database Fields. The second set has a
greater tolerance to the changes in the game design than the first. By virtue of its
members.

Secondly, during the production process and especially at the end, you can iden-
tify and test every member of the second set, every Primary Event, Secondary
Event, Game Object, Database Table, Database Record and Database Field. And
thus you can have greater Quality Control2 than in a Software Evolution Process.
This can all be done from one source and one tool: the Game Database. But you
cannot identify and test every member of the first set, every game module, Game
data or Abstract data with a Software Evolution Process or popular commercial
game-engines and game-editors which have also been developed with a Software
Evolution Process. In a Software Evolution Process, there is no such single source
or tool.

Thirdly, there is a book that explicitly explains the Event-Database Production
Process and the Event-Database Architecture. This book is called

Event-Database Architecture for Computer Games: Volume 1, Software
Architecture and the Software Production Process.

This book gives you an understanding of the software architecture3 at the beginning
of the process. There is no book which explains the Software Evolution Process for
computer games and can predict the software architecture it will produce. You can
only see this at the end of the process.

Fourthly, the Event-Database Production Process and the Event-Database
Architecture provide you with a Relational Database and a Relational Database
Management System for building computer games. To manage and query the huge
amounts of data that it takes to build and run modern computer games. The Software
Evolution Process does not.

This will be a multiplayer game that can be played across a computer network.
Therefore, the form of the Event-Database Architecture that will be used will be the
Multi-User Distributed Form based on the Client Server Network Architecture.

Please refer to the subchapter entitled Multi-User Distributed Form Client
Server in the book to see that Form.

Please refer to the subchapter entitled The Software Production Process4 in the
book to see the steps of the Event-Database-Production Process.

1.1  STEP 1: LPmud FEASIBILITY STUDY/VERTICAL SLICE

LPmud is a multi-user adventure game. The feasibility study will include a Vertical
Slice of the game showing you a short but in depth sample of what the final Game

3LPmud Software Production Process

World,5 will be like. You can see the vision for the study in the cover page in
Figure 1.1. The building of the Vertical Slice of the game on the target platforms
will follow the same steps for the standard feasibility study for a game built with the
Event-Database Production Process. Please refer to the chapter entitled

The Feasibility Study And Test/Vertical Slice

in the book

Event-Database Architecture for Computer Games: Volume 1, Software
Architecture and the Software Production Process.

In addition to those standard steps, there will several more custom steps.
For this game LPmud, the ‘Vertical Slice’ will have a main menu or ‘Frontend

menu’ from which the player can choose one option. And that is to play a ‘Single
Player game’ in The Village.

The ‘Single Player game’ will have all of the 2D and 3D artwork for a single part
of the Game World called ‘The Village’ developed up to the highest standard. That
is to say, the Quality6 it will have in the final release of the game. This will include
all of the artwork and animations for the sky, birds, trees, bushes, vegetation, rivers,
local animals, local villagers and houses in the village.

FIGURE 1.1  An example of a cover page for a feasibility study to build a computer game
LPmud.

4 Event-Database Architecture for Computer Games

It will have all of the sounds for the sky, birds, trees, bushes, vegetation, rivers,
animals, local villagers and houses also developed to highest standard. That is to say
the Quality it will have in the final release.

The player will be able to wander freely along a single road which passes through
the centre of the village, from one end to the other. And when the player has finished
exploring and reaches the end of the road, the game will end. After the title and end
credits, showing the names of those who contributed to building it have been dis-
played, the game will shut down.

1.2  STEP 2: LPmud GAME DESIGN

LPmud is a multi-user adventure game. The Game World is set in medieval times
and is based on medieval folklore, myths and fantasies. It is made up of settlements,
buildings, various wild landscapes and terrains, creatures, characters, puzzles,
quests and treasures, for the player to discover and explore. You can see the vision
for the study in the cover page in Figure 1.2.

One of the unique aspects of the game is that the Game World is developed with
LPC.7 LPC is a programming language that allows the players to modify their Game
World, add new items to the existing Game World, add their own new worlds next
to the existing worlds, as well as to test and modify these worlds. All of this can be
done while others continue to play the game, without having to shut the game down
and bring it back up again. This is because the game is played across the Internet,
and it is available 24 hours a day. Hundreds of players may be connected to the game

FIGURE 1.2  An example of a cover page for a game design to build a computer game
LPmud.

5LPmud Software Production Process

at any one time. The original version of the game is called ‘Genesis’ and is available
on the Internet, through a ‘Telnet Client’ at this ‘Telnet’ or TCP/IP Address here:

mud.genesismud.org
Port: 3011

You can get a ‘Telnet Client’ from Internet, through a Web Browser and the World
Wide Web, at this Web Address

https://www.putty.org/

Or you can access ‘Genesis’ directly from a Web Browser at the Web Address here

https://www.genesismud.org/

1.2.1  Settlements

The game follows a particular structure. The game is a Role-Playing Game set in a
world of magic and fantasy, which you can explore through adventures. It is made
up of many small remote towns and villages, separated by great distances. Next to
some of the towns or villages will be the castle of the local feudal lord, whose title
and castle bares the name of that town or village. And in and around that castle, will
be the courts, fields, gardens and giant arenas. Where this lord holds festivals and
sporting events for the locals from time to time.

The towns and villages have several buildings, pubs, shops, markets, guilds and homes.
And within these you will find a vibrant economy. Where you can buy almost anything
you need to take on your adventures or sell anything you bring back from your adventures.

The towns and villages are where the players builds up their level or reputation
amongst the inhabitants. Within some of the towns and villages are guilds which
players may join to work collaboratively with other players. Some of these guilds are
sociable and open, offering help to other characters like a fighters guild or a magi-
cian guild. Other guilds are anti-social and clandestine such as a thief guild or an
assassins guild. Players frequent these guilds when they want to take a short break
from the game. They may share their past adventures and organise new ones, with
other players in their guilds. And the players may also use whatever money they have
to purchase experience in a guild to improve their level or reputation.

Each player begins with a low-level reputation. The goal of the game is to build
up your reputation in the world, by building up a knowledge of the world. This may
be achieved through several, preferably heroic, but possibly villainous, acts that you
perform as part of your role in your guild. The player’s reputation is evident in his
or her title and level of experience. The title comes from the guild the player is part
of. And the level of experience is a score that increases whenever the player success-
fully completes difficult puzzles, quests or whenever the player destroys a creature
or another character. This includes other players, whom the player may steal from
or fight with. You can see a break down of the settlements and the buildings in each
one in Figure 1.3.

https://www.putty.org/
https://www.genesismud.org/
https://mud.genesismud.org

6 Event-Database Architecture for Computer Games

1.2.2  Buildings

Each building in the towns and villages has an inventory of items in it which gives it
its character. The pub has a landlord, local patrons, tables, chairs, glasses, bottles of
alcohol or wine, a cellar and an open fireplace.

The shops have a shop owner, local patrons buying or selling items to the owner,
shelves of items which you can buy in the store, a display of items outside the store,
a sign with the name of the store above the entrance, its owner and whatever goods
it trades in. Each shop will have a front facing entrance to the main street through
which the customers enter. And the shop will have a back entrance where the goods
sold in the shop arrive.

The markets are made of rows of market stalls made out of wood. Each stall has
produce on display, from locally grown crops such as apples, oranges and other fruits
to durable items such as jewellery, clothes, shoes, weapons and armour. And a stall
will also have tradesmen selling the goods on display.

The guilds have a sign with the name of the guild above the entrance, the guild-
master and a motto. Each guild will have a large hall where the members gather.
When you enter this hall, you will see more signs advertising the services the guild
offers and the roles or adventures that the players can take part in who join the guild.
And you will see along the walls of the hall portraits of the famous members of
the guild.

FIGURE 1.3  A hierarchical breakdown of one of the main themes of the Game World of
LPmud i.e. Settlements.

7LPmud Software Production Process

The homes will have a living room, kitchen and bedroom. In the living room will
be tables and chairs and an open fireplace. In the kitchen will be more tables, and
food and drinks laid out on these tables. And you will also find knives, pots, pans and
ovens for preparing the meals. And in the bedrooms you will find beds with a view
looking into a garden at the back of the home. Each home will have a front entrance
from the main street or road, and a back entrance through the garden. You can see a
breakdown of the buildings in Figure 1.4.

FIGURE 1.4  A hierarchical breakdown of one of the main themes of the Game World of
LPmud i.e. Buildings

8 Event-Database Architecture for Computer Games

1.2.3 M ountainous Landscapes

In between the remote towns and villages, there will be wildernesses in different
forms that the players must traverse. One form that wilderness will take is mountain-
ous terrain.

In this terrain there will be clouds floating across the tops of the mountains, and
rivers or streams flowing through the valleys. There will be sounds which reflect
the nature of that terrain. This includes the sound of the wind blowing through the
clouds, switching between a loud rush and a quiet breeze. This includes the sounds
of the rivers or streams flowing through the valleys.

The terrain will be ragged with lots of sharp edges, cliffs and overhanging ledges.
It will be littered with rocks, small and large, caused by the erosion from the wind,
rivers and streams, as well as the occasional rock falls.

In this terrain the player will find many puzzles, quests and other valuables. The
valuables will include random items found lying on the floor occasionally. This
includes weapons, armours, shields, money or corpses of past adventurers with such
items on them which you can loot.

The quests will come in the form of hostile wild creatures you have to kill. These
creatures can range from large, such as dragons, to small, such as mountain goats or lions.

The puzzles will come in the form of remote hermits or travellers you encounter
encamped in the mountains, either in tents or caves. Who will present you with a
riddle you must answer. Or present you with a board game in which you must beat
them such as chess or Go.

Each puzzle, quest or other valuables will have a set of commands for the player
to interact with it. And it will have a score which the player will receive as a reward
for completing or finding it.

Each will have a guard or Non-Player Character (NPC) who introduces the player
to the puzzle, quest or valuable. If it were a puzzle, then this will be the hermit or
traveller who shows the player the puzzle. If it is a quest, then this will be the guild-
master from one of the guilds in the villages or towns who gives the player that quest.
If it is some other valuable, then this will be some inhabitant of a town or village
who tells the player where to find it. This guard will either be hostile or friendly, and
either immediately attack the player on sight or simply wait for the player to approach
before engaging in conversation. The guard will also have an inventory of items they
carry which reflects their background or origins or profession.

These items in the inventory and the other valuables the player can find will all
have a weight and a value when sold in the shops. You can see a breakdown of
the mountains and valleys and the contents that the players may come across in
Figure 1.5, Figure 1.6 and Figure 1.7

1.2.4 T reacherous Landscapes

Other forms in which the wilderness between the towns and villages would take
would be caves, forests, woods, deserts and icy terrain. In each terrain there would
be wild creatures, both large and smaller, suitable for that terrain and treasures in the
form of puzzles, quests and other valuables, just as in the mountainous landscape.

9LPmud Software Production Process

FIGURE 1.5  A hierarchical breakdown of one of the main themes of the Game World of
LPmud i.e. Mountains.

FIGURE 1.6  Extension of Figure 1.5.

10 Event-Database Architecture for Computer Games

But there will be some major differences. The first major difference is that there
would be a strong emphasis on lightness and darkness in the landscape. That is to say
there would be areas so dark that if the player does not go there with a light source,
they will see nothing. This includes the caves, forests and the woods. In contrast the
icy terrains will be saturated with light, and full of reflections of the surface.

The second major difference is that all of the wild creatures would be hostile and
attack the player on sight in these regions, or run away.

The third major difference is that there will be puzzles in the forms of mazes
which the player has to find their way out of. This would mainly appear in the caves.

The fourth major difference is that there will be traps that do sudden damage
to the player. This will include pits, or sudden steep drops in the caves or forests,
or cracks in the ice covering lakes, which transport the player a great distance and
leaves you disorientated. It is through these traps that the player will suddenly find
themselves in some of the puzzles in the form of a maze.

The fifth major difference will be the hostile wild creatures in each domain. In the
caves, you would find lions, dragons and bears. In the forests, you would find snakes,

FIGURE 1.7  Extension of Figure 1.5.

11LPmud Software Production Process

birds, spiders and wild boars. In the woods, you would find deer, birds and bears. In
the icy terrains you would find polar bears, penguins, sea lions and white tigers. You
can see a breakdown of these terrains and the inhabitants in Figure 1.8.

1.2.5 N on-Player Characters

The NPCs are any characters which are not controlled by the player. These instead
would be controlled by the computer or some form of Artificial Intelligence.8 This
would include the inhabitants of the towns and villages, the publicans, the pub
patrons, market sellers and buyers, merchants, guildmasters, guild members, shop
traders and shop customers. This would include any men or women outside the towns
and villages guarding treasures or puzzles that the player may come across. And
those that introduce the player to quests in remote places. These would also include
any domesticated or wild creatures.

Each NPC would have a command to interact with it. At a minimum this will be
a command to just look at the NPC, and see its name, its short and long description.

FIGURE 1.8  A hierarchical breakdown of one of the main themes of the Game World of
LPmud i.e. Treacherous Landscapes.

12 Event-Database Architecture for Computer Games

That described its role in the Game World. And at maximum there will be several
commands you could give to receive some information or item from the NPC. For
example, if the NPC were the guildmaster, then you could use the command to get
quests from the guildmaster. If the NPC were a shop owner, then the command
would buy an item or sell an item to the shop.

Each NPC would also have a score which the player would receive for killing it,
a health which would reflect how strong it was in combat and an inventory which
would contain the items it was carrying. These items would reflect the role of that
character in the Game World. If the NPC were a publican, then this could be some
glasses or bottles of beer and perhaps some money. If the NPC were a shop owner,
then this could be some items sold in the shop.

All of the human NPCs would be friendly. And they would only attack the player,
if they were attacked. At which point they would become hostile and behave in a
similar way as hostile wild creatures described earlier. The difference is that the
human NPCs would wield whatever weapons or armour they had in their inventory
and use that in combat.

The weapons or armour they would use and how effectively they would use this in
combat would be determined by an Artificial Intelligence. An Artificial Intelligence
would also be used to control the movement of NPCs that could move.

For example, a human soldier guarding the entrance to a castle or a throne room
would patrol up and down in front of the castle gates or entrance to the throne room,
through several Waypoints controlled by the Artificial Intelligence.

Another example, a deer in the woods would run from one point to another.
To bend over and nibble at the foliage of trees and bushes for a few minutes, then
the deer would run to another point in the woods and repeat the cycle again and
again. These movements would be through a set of Waypoints controlled by an
Artificial Intelligence. You can see a breakdown of all the NPCs in Figure 1.9 and
Figure 1.10.

1.2.6 P layer Characters

The player’s character will have all of the qualities of a human NPC. Except it will
be controlled by the player instead of the computer.

Each player’s character will begin with no level of experience and be given a title
that suitably reflects this. The level of experience is the player’s score. It rises when-
ever the player completes a puzzle or quest or kills a creature or another character.
When the level of experience rises over a threshold, the player’s character will be
rewarded with a new title. This title reflects the growing reputation that the charac-
ter has. There will be a limit to the number of thresholds. And each time the player
passes one threshold, the amount of experience required to reach the next level will
increase exponentially.

But the player’s character will fall back down the levels, however, whenever that
character dies. The score will decrease by a set percentage, whenever this happens.

When a player reaches the highest level of experience, the player becomes
a Wizard. A Wizard is immortal and cannot die. Wizards do not play the game.
Instead, they teach other players how to play the game by giving them help and

13LPmud Software Production Process

advice. They also develop the Game World by editing it. A Wizard can add a new
domain to the Game World. This domain will be named after the former player’s
character. The theme of the domain could be whatever the player wishes. So long as
it is popular with the players. And his popularity will be determined by how many
times the players frequent there. The player may add new towns, villages or terrains
in that domain. And in these new areas, the player may add new inhabitants, crea-
tures, puzzles, quests and other treasures for other players to discover.

Inevitably, the contents of the domain will be partially inspired by the player’s
past adventures in the Game World. And it will partially be inspired by ideas from
the player’s experiences outside of the Game World. Nevertheless, after the player

FIGURE 1.9  A hierarchical breakdown of one of the main themes of the Game World of
LPmud i.e. Non-Player Characters.

14 Event-Database Architecture for Computer Games

has added the new domain, this will add a new dimension for the next generation
of players to explore. Each Wizard is awarded a new form of score that is related to
their domain. The score increases depending on how many players enter it and how
much time they spend in it.

Before a player becomes a Wizard, however, you will be free to take whatever
path you want through the Game World to increase your level of experience. Each
player’s character will not follow the same linear progression through the Game
World. Each domain will present you with a single theme. Each will have its own set

FIGURE 1.10  Extension of Figure 1.9.

15LPmud Software Production Process

of puzzles, quests, treasures, creatures and characters for you to explore at leisure
that fits that theme.

Whatever path you choose to take, all players will share the same User Interface
to interact with the Game World. Since this game will be a multiplayer game played
across a computer network, it will be built with the Event-Database Architecture
in a Multi-User Distributed Client Server Form. As already described in the sub-
chapter entitled

Multi-User Distributed Client Server Form

in

Event-Database Architecture for Computer Games: Volume 1, Software
Architecture and the Software Production Process.

It will be run by a large central powerful computer or Game Server connected to a
series of less powerful computers or Game Clients. The players will use the Game
Clients to connect to the Game Server and play the game through its User Interface.

When you connect the Game Client to the Game Server, you will be presented
with a short menu, with a message welcoming you to the game e.g.

LPmud
Version 1.0.0.
Event-Database Architecture
Number of Users: 1000
Enter the name of your character:
Password:

This menu would include a prompt for the player to enter a name of an existing
character or a new character, and a Password for authenticating their access to that
character.

If your character were new, then you would be presented with submenus to cus-
tomise the details of your character. This would include your character’s Password,
age, sex, race, appearance and guild you want to belong to.

After you have entered the details of your character, the character would enter the
Game World. If the character has been played before, whatever details that character
had, when the player last left the Game World, would be restored from the Game
Database.

Following their entrance into the world, each player will be shown a view of the
world, from a camera which is at a fixed position above and behind the head of the
player’s character. This first location will always be the same location, in the build-
ing of the guild that the player belongs to, in one of the friendly, inhabited towns or
villages. If the player had been disconnected temporarily from the Game Server,
due to an error or loss of connection on the Internet, then the first location will be
whatever the last location of the player’s character was before the disconnection.

16 Event-Database Architecture for Computer Games

The player will be able to interact with the Game World by issuing these com-
mands through the Game Controllers:

FORWARDS COMMAND
BACKWARDS COMMAND
TURN LEFT COMMAND
TURN RIGHT COMMAND
JUMP UP COMMAND
JUMP DOWN COMMAND
LOOK COMMAND
GET COMMAND
DROP COMMAND
GIVE COMMAND
WIELD COMMAND
WEAR COMMAND
REMOVE COMMAND
SAY COMMAND
TELL COMMAND
SHOUT COMMAND
KILL COMMAND
RESURRECT COMMAND
QUIT COMMAND

The Forwards Command will accelerate the player forwards, in the direction the
camera was facing, up to a maximum speed.

The Backwards Command will decelerate the player’s forward motion, in the
direction the camera is facing, eventually causing the player to stop any forward
motion. And then start accelerating backwards, in the opposite direction the camera
was facing, up to a maximum speed.

The Turn Left Command will accelerate the player’s angular motion to the left,
in an anti-clockwise direction, from the direction the camera was facing, up to a
maximum speed.

The Turn Right Command will accelerate the player’s angular motion to the right,
in a clockwise direction, from the direction the camera is facing, up to a maximum speed.

The Jump Up Command would either jump the player’s character upwards and
back down on the floor or surface the character was standing on. Or it will automati-
cally move that character onto any overhanging ledge or level that the character can
reach and walk along. And the Jump Down Command would make the player’s
character either crouch down and hold that position. Or it would automatically move
the character down off a ledge or level, down to a lower level that the character was
facing and could walk along.

The Look Command will allow the players to look closely at any item they select
in the Game World and see any additional details that item may have.

For example, if the players were to look at either a building in a town, a feature
of a landscape, they would see the details of any of its characteristics. They would
also see whether they could enter it or not. Or if the players were to look at a tree,

17LPmud Software Production Process

they would see whether they could climb it or not. If the players were to look at an item
lying on the ground, they would see any markings it had and whether they could pick
it up or not. If the item had a message or sign, large or small, attached, they would be
able to read it. And if the item offered the players new commands they could use, they
would be able to see these commands and read the instructions for these commands.

If the players were to look at another character, they would see the features of
the head, hair, face, arms, legs, torso and the rest of the body of that character. They
would also see what the character was wearing, and any items that character was
carrying in their And all the other characters, in the same location, will receive a
message saying what the players were looking at.

All the characters and creatures in the Game World would be able to carry items.
And each would have an inventory that stores the items they were carrying. The
player’s character may pick up any item nearby and add it to the inventory with the
Get Command.

The players may also drop an item, from the inventory, by issuing a Drop
Command. Each item would have a weight. And each inventory would have a limit
to the total weight of the items it can carry. And once this limit had been reached,
that character or creature cannot carry any more items. And this would be displayed
in the User Interface to any player who subsequently attempts to pick up an item. Or
when they try to pick up a very heavy item, whose weight exceeds this limit. Or when
they try to give an item to another character or creature with the Give Command
that causes this limit to be exceeded.

Once a character is carrying an item, that character can then use it. It may be worn,
if it were a piece of clothing or armour, by using the Wear Command. Or it may be
wielded, if it were a weapon, by issuing the Wield Command. Or the item may have
its own commands for using it. As has already been mentioned, these commands would
either be revealed when the player examined the item. Or the commands may be revealed
when the player examined the location where the item was found. Or another character in
the game may reveal the commands, to the player, as part of some quest.

When the player no longer wishes to use an item, the player may use the Remove
Command to remove it. This would be only if the item were wielded or worn by
the player’s character. Or the player may drop the item using the Drop Command.
Or the player may give it to another character, including another player’s char-
acter using the Give Command. This last command allows the players to work
collaboratively.

The players may also collaborate by communicating. All the characters in the
game can communicate with other characters through either the Tell Command, to
send private messages. Or through the Say Command to broadcast to other charac-
ters in the local vicinity. Or the Shout Command to broadcast to other characters
at remote distances. You can see a breakdown of all player characters, their features
and interactive commands in Figure 1.11.

1.2.7 C reatures

In the landscapes outside of the towns and villages will be wild creatures. Each crea-
ture has a set of commands you can use to interact with it, a score you get for killing

18 Event-Database Architecture for Computer Games

it, a health which reflects how strong it is in combat and an inventory which contains
the items it will drop when it is killed.

A creature may also be hostile or friendly. A hostile creature will attack the player
on sight. And it will continue to chase and hunt the player until it or the player is dead.
A friendly creature will not attack the player unless the player attacks it, intentionally
or unintentionally, by doing damage to it. At which point it will become hostile.

When multiple characters, controlled either by players or non-players, attack a crea-
ture, the first one that attacks it will be the one that it will be hostile too and its target.
After that target is dead, then the next attacker that hits it will become its target, and
so on and so on. Until either the creature or all the attackers are dead. You can see a
breakdown of all creatures, their features and interactive commands in Figure 1.12.

1.2.8 T reasures

As previously mentioned, treasures in the Game World would come in the form of
either guarded treasures i.e. puzzles or quests that give rare valuable rewards to the

FIGURE 1.11  A hierarchical breakdown of one of the main themes of the Game World of
LPmud i.e. Player Characters.

19LPmud Software Production Process

players when they solve or complete them. These all will have an NPC guarding that
treasure who introduces the players to the puzzles or quests, explains the rules and
the rewards and gives them any help or assistance to complete it.

Or the treasures may come in the form of unguarded treasures i.e. rare items
which the player finds lying around, in containers or outside containers, on the
ground at random. These containers include bags, corpses or treasure chests which
the players find in the Game World at random. These containers will have invento-
ries which will include one or more special weapons, armour, shields, jewels, books
of magic spells, magical wands, magical scrolls, potions, rods, staff, cups, cutlery,
crowns, robes, rings, boots, necklaces, gloves made from precious metals and stones
which they can loot.

Each treasure will have a weight which will limit the number that can be carried
by a player in the player’s inventory.

Each treasure will have a value. This will encourage the players to visit the social
areas, such as the shops in the towns and villages, and meet other players. In these
shops they will be able to sell the treasures for money which they can use to buy

FIGURE 1.12  A hierarchical breakdown of one of the main themes of the Game World of
LPmud i.e. Creatures.

20 Event-Database Architecture for Computer Games

items they need. The rarer the treasure is, the higher the value they will be able to
sell it or buy it back for.

The treasures in the Game World would be randomly distributed. To encourage
the player to explore as much of the Game World as possible. And to encourage the
player to examine every character or creature they come across very closely.

After a while, most of the treasures in the Game World in the various locations will
either have been found by the players or have been moved around. Or these may have
been sold in the shops or markets in the town. Or these may have disappeared from
the game after being used or destroyed. So, after long periods, say every 24 hours,
some or all of these treasures will be reset back to the initial positions where these
first appeared. Any characters or creatures that were guarding, or in possession of,
these items would also be reset as well. You can see a breakdown of all guarded and
unguarded treasures, their features and origins in Figure 1.13 and Figure 1.14.

FIGURE 1.13  A hierarchical breakdown of one of the main themes of the Game World of
LPmud i.e. Guarded Treasures.

21LPmud Software Production Process

1.2.9 C ombat System

The player can issue a Kill Command to start attacking another character or creature.
In the local vicinity. An NPC or a player’s character may also begin combat when the
player issues some other offensive command, from an item that character was carrying.
And that command subsequently damages another character or creature nearby.

Once combat has begun, the fight takes place over an indefinite number of peri-
ods. Each period, or round of combat, lasts a short time; about two seconds. During

FIGURE 1.14  A hierarchical breakdown of one of the main themes of the Game World of
LPmud i.e. Unguarded Treasures.

22 Event-Database Architecture for Computer Games

each round, both opponents exchange one blow. Even if a character has multiple
opponents, that character still only deals one blow, to one of these opponents during
a round. This opponent is either the character or the creature that began the combat,
by attacking the player. Or it is whoever a player specifies to attack, by issuing a Kill
Command, before or during combat. All the characters nearby, participating or not
participating in the fight, can see each blow struck.

The amount of damage each character does during each round of combat depends
on its WEAPON CLASS. This in turn depends on the total amount of damage or
Weapon Class of all the weapons that character was wielding in the character’s
inventory.

Likewise, the amount of damage done by each creature, during each round of
combat, will depend on its Weapon Class. And that in turn depends on the total
amount of damage or Weapon Class of all the weapons that creature was wielding
in its inventory. But some creatures will be carrying no weapons. These will depend
only on natural weapons, such as claws or teeth and a natural Weapon Class. In all
cases, nevertheless, the greater the Weapon Class of the character or creature, the
greater the potential damage each blow does to an opponent in each round of combat.
Although the damage actually done is a random value of the maximum damage that
can be done.

However, the effectiveness of each blow will also depend on how much protec-
tion or ARMOUR CLASS the recipient has. This in turn depends on the total
Armour Class of the protection that the recipient was wearing. This includes arti-
ficial protection, such as any helmets, armour or shields a character is wearing. It
also includes natural protection, such as the thickness of the skin which a creature
may have. The greater the protection, the lesser the overall effect of each blow on
the recipient.

The net effect of each blow (i.e. the opponent’s Weapon Class minus recipient’s
Armour Class) to a recipient is taken off the health of that recipient. This is a number
that reflects the stamina of the recipient and has an upper limit. When a creature
appears in the game, its health is set to this limit. Similarly, when a player creates
a new character, that character’s health is set to an initial limit. However, another
of the rewards which a player receives, along with a new title, when the level of
experience of that player’s character passes one of the thresholds, is an increase of
this limit.

Once an opponent has lost all of the health that the opponent has, during com-
bat, that opponent dies and the combat ends. The corpse of the opponent falls to
the ground. And this contains whatever items the opponent was carrying, and any
money the opponent had left. Any character left alive may then take the corpse or
loot as many items from it as that character can carry.

When a character belonging to a player dies, the character transforms into
a ghost. This affects the character’s appearance and the commands the player
can use. The dead character is still recognisable, from the facial and bodily fea-
tures. But the character is no longer wearing or carrying any items and appears
as a pale, apparition. Instead of walking through the world, the character floats
across it. The player can still move around and examine other characters, the
surrounding location, and any buildings, structures or items nearby. The player

23LPmud Software Production Process

can also still communicate with other characters. But the player can no longer
pick up or drop any items. Nor can the player initiate any further combat or be
attacked.

Nevertheless, the player has the option to resurrect the character by issuing a
Resurrect Command through the User Interface. After being resurrected, the char-
acter reappears back where all the players start in the world. The character loses a
set percentage of the level of experience which he or she had accumulated. And this
may in turn cause the upper limit of the health, of that character, to fall, if the level of
experience drops underneath one of the thresholds. Either way, the game restores the
health of the character back up to its maximum. And the character continues playing
the game, restarting with an empty inventory.

Of course, players can avoid this outcome by simply choosing to run away from
combat. Any character engaging in a fight can still move. And if a player were to
run fast enough away from his or her attacker, so that the attacker could not reach
that character within one round of combat, the combat would end. The health of that
character could then be restored by returning to a village or a town. And there the
player could buy drinks, food or magical remedies in the shops or public houses to
consume to restore the character’s health.

A player can also quit the game, at any time, by issuing a Quit Command through
the User Interface. This would save the important details of the player’s character
that would be restored when the player connected back at a later date. The command
would also remove the player’s character, from the Game World, and disconnect the
Game Client from the Game Server.

1.3  STEP 3: LPmud TECHNICAL DESIGN

The next step in the Event-Database Production Process, after the game design,
would be to write a technical design. See the chapter entitled

“The Software Production Process” in the book

Event-Database Architecture for Computer Games: Volume 1, Software
Architecture and the Software Production Process.

The technical design will spell out all of the techniques and tools that will be used to
produce the multi-user adventure game, which can run 24 hours a day, with hundreds
if not thousands of players. Allowing the players to grow progressively, in knowledge
and proficiency in the Game World, until eventually they reach a level of a Wizard
and can create their own domains in the Game World. You can see the vision for the
technical design in Figure 1.15.

But before looking at an example of how to do this, let us look at how a technical
design would be written in the normal ad hoc process used in the Computer Games
industry.

In the Software Evolution Process used in the Computer Games industry, the
technical design would be written in the Pre-Production phase. This document, like

24 Event-Database Architecture for Computer Games

the game design before it, would only be concerned with selling the game to its
financial backer. And so, likewise, it would concentrate on just the highlights. It
would begin with a description of the platform the game was destined for. This
would include its microprocessors, including its main Central Processor, Graphical
Processor and Audio Processor. This would include its memory and the storage
media which the software would be held on. This would include other components
that help the hardware either evaluate mathematical equations, transfer data between
the hardware components or communicate with other hardware. And this would
include the peripherals of the computer hardware, such as its Game Controllers.

The technical design would begin with a description of the size and speed of all
these various components. Most of this description would be lifted, verbatim, from
the manuals that accompany the computer hardware, without any added explanation.
Furthermore, none of these components would be explicitly related to the compo-
nents of the game design, by authors of the technical design. These would merely
be mentioned to impress the reader with their knowledge of the computer hardware.

Following that description, of the components of the computer hardware, would
be a brief description of the tools, which would be used by the various contin-
gents assembled to build the game. This would include the tools used by the Game
Programmers to write and debug the software modules. This would include a
description of the tools that would be used by the Game Artists, to create and edit
the various graphics and animations for the game. And this may sometimes include

FIGURE 1.15  An example of a cover page for a technical design to build a computer game
LPmud.

25LPmud Software Production Process

the tools used by the Sound Designers to record and edit the various sounds that
would be heard during the game. On other occasions the Sound Designers may be
completely ignored and their work dismissed as trivial.

The description would also include the Revision Control Software that would be
used to store the different sets of software modules, and Game data, used to build
the different versions of the game. Although, on some occasions in the Software
Evolution Process, that tool may be omitted. And, instead, its function would be one
of several designated to be handled manually throughout the ad hoc process.

For example, it may be decided that, at arbitrary points along the process, the
latest set of software modules and data would be archived, on some powerful com-
puter, with a large storage media. And that designated computer would be available
on a computer network. The Game Programmers, Game Artists, Sound Designers
and Game Designers, connected to that network, would all be responsible for trans-
ferring their work across that network at the right time. But there would be no one
person, or software, designated to control the order in which this archive was kept.

All of the tools chosen, and included in the technical design, would be based on
popular choices. These would be tools that have been used on commercially successful
games of the past. This includes popular commercial game-engines or game-editors.
And these would be chosen regardless of what game design was being built. None of
the choices would be informed by an analysis of the particular problem that the techni-
cal design was trying to address. And, indeed, the description of these tools may well
be copied, verbatim, from some previous technical design for another game.

The rest of the technical design would concentrate on two or three main compo-
nents of the game and highlight how these would be implemented. These would be
the displaying of the three-dimensional graphics of the Game World, the modelling
of its physics and the controlling of the behaviour of its NPCs with an Artificial
Intelligence. This is not to say that the software modules which would be used to
build these components, would be described in any detail. In fact, there would be no
idea of how many software modules would be involved, let alone what any of these
would do. Instead, the technical design would merely include a description of the
basic theoretical steps and methods that would be used to display these graphics,
model this physics and control these characters. And it would include an analysis of
these steps and methods when more graphics, physics or characters were required,
by some change in the game design.

This analysis may be illustrated graphically through a line graph. The graph
would show how the number of steps would, theoretically, be increased when for
example more graphics had to be displayed. Further illustrations may include anno-
tated sketches of how one of the locations of the Game World, like a village, would
be divided up into smaller regions. So that the graphics could be quickly and effi-
ciently displayed to the player, in that location, using the chosen theoretical method.

Likewise, the method chosen for modelling the physics and controlling the NPCs
through an Artificial Intelligence would be highlighted, through similar graphs and
annotated sketches. And these highlights would be set in the context of other loca-
tions, and other characters in the Game World.

Nevertheless, all of these theoretical methods chosen to display the graphics,
model the physics and control the characters would be popular ones. These would

26 Event-Database Architecture for Computer Games

be tried and tested methods, used in past computer games, especially successful or
famous ones. These methods would probably have already been published in a book,
one of a number of technical design sources,9 and subsequently copied into the tech-
nical design. Like the tools described earlier in the technical design, there would
be no hint of originality. These choices too would not be based on any informed
analysis of the particular game design being addressed. These would have been cho-
sen regardless of what the game design turned out to be. And, indeed, within the
technical design itself, the only relationship visible, between these choices and the
components of the game design, would be a tangential one.

To disguise the lack of originality of these choices, the authors of the technical design
may cover its flaws with overcomplexity. They may do this by conflating one method,
used to display three-dimensional graphics, with another, used to model physics. Some
theoretical methods used to display these graphics have some similarities with those
used to model physics. One method from the former set and another from the latter may
for example depend on dividing the Game World into smaller regions. So the authors
may attempt to conflate the regions for the graphics with the regions for the physics. But
the confusing result would merely be a crude attempt, to hide the unoriginality of the
two choices for the graphics and physics, behind a contrived solution.

As for how the rest of the components of the game design would be built, the tech-
nical design would be virtually silent. How the two-dimensional graphics and text
would be displayed or animated, how the commands would be issued through the
User Interface, how the sounds and music would be played back, all of these issues
would either be omitted. Or there would be a brief, speculative discussion of each
topic, quickly followed by reassurances that these components were minor issues. As
such, these would be best left, until later on in the production process, where these
could be dealt with expediently. And, surely enough, these components would subse-
quently be cobbled together at the end of the process; at the 11th hour.

For example, the technical design would speculate on the combat component of
the game design of LPmud, and how commands would be issued by the player. It
would do this by describing the User Interface for another adventure game, based
on a medieval theme. The description would include how commands were issued by
the player in this other game. And the description would be accompanied by images
of this existing Interface.

But the technical design would not be specific about which components of this
existing User Interface would be copied. Other than, that is, to say that some of it
may be useful. Likewise, there would be no mention of how the software modules
would be built. So that commands could be issued by the player to communicate
with other characters, give and steal items from other characters, pick up items off
the floor, buy and sell items, or edit the Game World. Other than, that is, to say that
these commands could be easily built during the process, or at the end of it.

The resolution of such issues, in the technical design, would not sell the game to
its financial backer. Therefore, these would be expendable. What would definitely help
sell the game would be the custom tools used to build it. Especially, the game editors
that could be used to edit the different stages of the game, when the game design had
changed, would be priceless. The greater the number of custom tools, the more obscure,
the more exclusive, the more flexible and powerful the tool, the more impressive the

27LPmud Software Production Process

technical design would appear. So its authors would include a brief description of the
set of small, custom tools that would be used to process the data, produced by the
Game Artists, Game Designers and Sound Designers. This would be further illustrated
by flow charts, showing how the data would be collected, merged or converted by
each tool and transferred onto the next. And after several steps, each chart would show
how each subset of tools would produce the final, compact and efficient Game data
that would be used by the game. There would be a constant obsession with efficiency
through out the document. But more on that obsession later.

Some of these small custom tools may already exist and have been used on past
games. But others would not exist at all. And yet the technical design would not
make the distinction between these two sets. Nor would it explain how those tools,
which did not exist, would be built. Nor would it include a description of the closed
data format, which each tool would read in or write out.

The centre piece of the tools would, of course, be the game editors. And the technical
design would include a description of the capabilities of these tools. This would be sup-
ported by samples of the images, of the User Interface of each one. But the game-editors
would have grown over a long Software Evolution Process, to meet the demands of sev-
eral games from the past, which the Software Developer had worked on. During this time,
the tool would have accumulated many features and become excessively complex and
unstable. So many of the options visible on its User Interface would be redundant for the
game design of LPmud. And yet the technical design would not indicate what these were.

Unfortunately, the authors, of this section of the technical design, would be given
carte blanche, to add more features to these game editors. So that these may look even
more impressive and thus, by implication, the technical design as well. One example
of this would be the ability to write scripts, which altered the behaviour of some of
the NPCs, or other items in the Game World. It has long been an obsession, in the
Computer Games industry, to create a tool which could give the Game Designers total
control over the editing process. So the technical design would include such features
which pamper this obsession. And it would give examples of the kind of scripts which
could be written, later on in the production process, to say modify the behaviour of the
dragons described in the mountainous terrain in the game design of LPmud.

But, invariably, these brief examples would belie the huge amount of work
involved. For the Game Designers would quickly find the scripts too limiting. And
the Programmers, of the tool used to write these scripts, would end up attempting to
crudely reinvent existing programming languages. Thus, on top of the difficulty of
building a game with an incomplete game design,10 would be added the difficulty of
reinventing a programming language as well.

The game editors would be the last of the highlights included in the technical
design, of a Software Evolution Process. Although, sometimes, the design may be
padded out further, by illustrations which resemble a software architecture. But, in
fact, these would be nothing of the sort.

For example, the technical design may include a box-and-line diagram, showing a
subset of the software modules, that would be used to build the game. The diagrams
may be built using tools based on the Unified Modelling Language (or UML11). Each
box would represent a module. And it would include the name of the module, as well
as the names of a subset of its software procedures and data.

28 Event-Database Architecture for Computer Games

Nevertheless, the diagrams would not include even a third of the software mod-
ules that would be used to build the game. Nor would even half of the software pro-
cedures and data within each module be named. Nor would any of those that were
named be explained. Furthermore, the relationship between the modules, depicted
in the diagrams by the lines connecting the boxes, would not be explained. Each
line between two boxes would merely indicate an implicit relationship, between two
modules which shared common properties. And it would not even give you any idea
whether one module would be used by the other, let alone how. These diagrams are
often depicted using heuristics called “design patterns” which the authors, just like
UML diagrams, conflate with software architectures. But these are nothing of the
sort. More on this later.

In contrast, in the Event-Database Production Process, the technical design would
be written by the Game Programmers after consultation with the Game Designers,
Sound Designers and Game Testers. It would be different in two major respects.

Firstly, it would only be concerned with the Events, Actions, Game Objects and
Host modules of the Architecture. It would be concerned with how these would
be used to build the components of the game design; at least those which had been
included in the initial draft.

Secondly, it would be concerned with the system of Events or Game Objects that
would be used, to edit the software, when the game design had changed. In these two
respects, there are several advantages to demonstrating the application of the Event-
Database Architecture, through the game design of LPmud.

The first advantage of LPmud is that it consists of a wide variety of smaller games
that take place in the same world. These smaller games come in the forms of the
puzzles, the quests and the challenges of strength and endurance that different char-
acters and creatures in the world present. These games take place over a wide variety
of locations. Some of these games are based on card games, board games, novels,
films or folklore. Indeed, you can come across many anachronisms, because items
from one period of history end up being mixed with items from another.

Furthermore, the game requires that the players be able to edit the Game World and
add their own new ideas, once they reach the highest level of experience. The players
may add more locations, more characters, creatures or other items lying around both
new and old locations. Hence, the diversity within the game helps demonstrate how
the Event-Database Architecture could support such diversity. And, therefore, how it
could support dramatic changes to any other, given game design. Likewise, the ability
to edit the Game World helps demonstrate how extensible the Architecture would be.

The second advantage of the game design of LPmud is that it introduces a sec-
ond software architecture. This is namely the existing software architecture that
was used to build LPmud. And that allows a comparison to be made between this
practical software architecture and the Event-Database Architecture. So that the
difficulty, or ease, of transferring a game from a practical software architecture, to a
theoretical one, the Event-Database Architecture, could be illustrated.

The third advantage of the game design of LPmud is its availability. Both the
game design and the existing software architecture that supports it are open and
freely available to the public through the Internet. So anyone can practically exam-
ine, play with and compare this with the Event-Database Architecture.

29LPmud Software Production Process

The existing software architecture, which supports the game design of LPmud,
has four components. The first component is a set of computer files that describe the
game modules, and the software library these modules use, to implement the differ-
ent features of the game, also known as a MUD Library or Mudlib. These features
include the User Interface, any characters of the players, any other characters or
creatures, any locations, any buildings, structures or items lying around in the Game
World. The game modules and the software library are written in the LPC program-
ming language and are independent of the computer hardware.

The second component of the software architecture is the software that is built on
the computer hardware, also known as a Game Driver. You can see examples of the
LPmud Game Driver on the Internet at these Web Addresses:

https://www.ldmud.eu/
https://www.dworkin.nl/dgd/
https://github.com/lnsoso/mudos
https://www.lysator.liu.se/projects/lpc4.html

This software interprets the LPC language. It also enables multiple players to
connect to the computer. It presents the players with the User Interface, described
by the first component of the software architecture. And it sends the response of the
players, back to this first component.

The third component of the software architecture is a special game module,
included in the first component, known as the MASTER OBJECT. This acts as a
conduit between the first component and the second component. That is, it describes
the relationship between the software, built on the computer hardware, and the game
modules, which are independent of the hardware. It describes, for example, which
game modules would be loaded into the computer memory first, when the game
started. It describes which one of the game modules would be the entry point for
the game and present the first screen of the User Interface. It describes what would
happen to the game modules when the game was shut down. It describes which game
modules could be edited by the players, and so on.

The fourth component of the software architecture is the documentation that
accompanies the first component. These are computer files, written in natural lan-
guage, including the User Manual for the players and other documentation. This
includes a description of the LPC programming language. And it includes a descrip-
tion of the software library, in the first component of the architecture.

As well as this software library, any standard software procedures, used by the
first component or the second component of the architecture, are described in this
documentation. These standard procedures describe common properties that items,
characters or locations in a game may have. These procedures either respond to a
player issuing a common command, through the User Interface. Or these respond
to a location which can have an effect on all the items or the characters within it.
Or these respond to an item, in a location, which can have an effect on all the other
items, or the characters, in that location.

For example, suppose you were making a Game Object that you wanted the play-
ers to be able to pick up. You would include the standard software procedure which

https://www.ldmud.eu/
https://www.dworkin.nl/dgd/
https://github.com/lnsoso/mudos
https://www.lysator.liu.se/projects/lpc4.html

30 Event-Database Architecture for Computer Games

would allow that item to be picked up, called ‘get’, in the design of its game module.
And this procedure would be used just before that item was picked up by a player.
If you did not want the players to pick up a Game Object, you would simply not
include that procedure in the game module for that Object.

Some of these standard software procedures are common to all subsequent games
that have been built on the same LPmud software architecture. But others are made
up for a particular game. For example, suppose one of the locations in the world was
on top of a volcano. And in this location, the lava would periodically burst up, burn-
ing everyone, and destroying any items lying around nearby. If you wanted any item
in the game, to describe whether it could be destroyed by the volcano, you may add
a new standard software procedure for that called ‘burn’. Any item, which had this
‘burn’ procedure in the game module describing it, would be destroyed. And those
which did not would not be destroyed.

This is one of the principles of the software architecture. That is to say, any com-
mon properties that the locations, the characters or other items may share should be
described through a standard software procedure with a given name. And that this
name and procedure should be described in the documentation of the architecture.

The second principle is closely related. This is that if there were any existing
component of the software library, of the architecture, that may be used to add a
location to the game, then it should be used. If there were no existing components,
and you believed future, or existing locations, may share common properties with
this new one, then you should add a component to the library with these properties.
And subsequently, you should use this new component to build the new location. The
same principle applies to adding a character, a creature or some other item to the
game. These additions should use existing components of the software library or add
new ones where possible. Furthermore, any new component of the software library
should be described, in the documentation of the software architecture.

The third principle of the software architecture is that the first component of the
architecture should always be described using the LPC language. That is to say, the
User Interface, the locations, the characters of players, other characters or creatures
and other items in the Game World should all be described in a way that was inde-
pendent of the computer hardware. The User Interface should provide the players
with a way of writing or editing files in LPC for each of these items in the Game
World. That would be translated or ‘compiled’ into pseudo machine code or LPC
CODE. That in turn would be later executed when the player interacted with these
items in the Game World by a VIRTUAL MACHINE or VM.

A Virtual Machine is a software simulation of a real machine or computer hard-
ware. It simulates the execution of the instructions of the real Central Processor.
Any software written for the real Central Processor can run in the Virtual Machine.
The disadvantage is that this is slower than executing those instructions with a real
Central Processor. But the advantage is that if any errors occur executing those
instructions, only the Virtual Machine will stop operating. The software using the
Virtual Machine to execute those instructions can carry on. In the case of the VM
that runs LPC code it is very simple. It does not have as many parameters fed into
it or inputs as a real machine. It can only take in numbers, texts, Game Objects or a
list made up of these three types. And it does not have as many parameters coming

31LPmud Software Production Process

out of it or outputs as a real machine. It does not have to display anything on a screen
or a Graphical User Interface. The result of executing any code is either a number, a
text, an Object or a list made up of these three types.

The fourth principle is that every computer file, in the first component of the soft-
ware architecture, should describe either one or more interchangeable parts of the Game
World. That is to say, each file should either describe a location, a character, a creature or
some other item that a player would visit or see. Or it should describe one part of a loca-
tion, a character, a creature or some other item. But all of these should be interchangeable.

So, for example, a character can become an item, carried by another character
in the game. Also, this item can become a location that contains other characters in
the game. And, furthermore, even part of a location, a character, a creature or some
other item can become an invisible item, somewhere in the Game World.

The fifth principle of the software architecture is that the game should not stop
unless it has been explicitly shut down by someone administrating the game. That is
to say, the game continues, 24 hours a day, and no errors brought about by the play-
ers, or otherwise, terminate the software. Also the game continues even while some-
one is editing its User Interface, the locations in the Game World, the characters, the
creatures or other items. In other words, the game should be failsafe.12

This last principle receives reinforcement from the third principle and the second
component of the software architecture. This component has been designed not to
terminate, even when it detects errors while interpreting the LPC language. Further
reinforcing this last principle is the fact that the second component rarely changes.
And whenever an extension of the features it offers occurs, the new software that
offers these extensions is kept separate from the second component. So that if these
other software were to fail, the second component would still continue.

These five principles, along with the four components, form the software archi-
tecture of LPmud.

There is a diagram summarising the software architecture of LPmud in
Figure 1.16. You can see the information exchanged between the components of the
architecture in Table 1.1 and Table 1.2.

TABLE 1.1
Legend of Numbers Displayed in Figure 1.16

Data Role
1 Description of the software library or MUD Library of locations, characters and other

items in the Game World, written in natural language.

2 Description of the Master Object written in natural language.

3 Description of the Master Object, written in LPC.

4 Description of the software library or MUD Library of locations, characters and other
items in the Game World, written in LPC.

5 LPC code or pseudo machine code, translated from LPC, that is executed by a Virtual
Machine or VM to control the behaviour of items in the Game World.

It is a list of the information exchanged between the components of the Software Architecture of LPmud.

32 Event-Database Architecture for Computer Games

FIGURE 1.16  The original software architecture of LPmud.

TABLE 1.2
Comparison between the Original Software Architecture of LPmud and the
Event-Database Architecture

LPmud Software Architecture Event-Database Architecture
Principle of reusing software through a
software library (i.e. a MUD Library).

No rules about a software library.

Principle of reusing software through
inheritance (i.e. Game Objects inheriting
properties from other Objects).

No rules about inheritance.

Principle of simplicity through files (i.e. one
file per Game Object).

Principle of simplicity through Actions (i.e. one
Action per Game Object).

Principle of one programming language (i.e.
LPC).

No rules about programming languages.

Principle of robustness (i.e. keep the game
running 24 hours a day).

No rules about robustness. Principle of self-
correction (i.e. skipping the execution of
erroneous Actions once errors have been
detected).

(Continued)

33LPmud Software Production Process

Table 1.2 shows a comparison between the software architecture and the Event-
Database Architecture.

From this table, you can see that software architecture of LPmud has some advan-
tages, whereas the Event-Database Architecture does not have.

Firstly, the main advantage that the original software architecture of LPmud has
is that it has less components than the Event-Database Architecture. And it is
therefore more simple.

Secondly, the software architecture of LPmud has more principles. These prin-
ciples help make the software architecture more robust and recover from errors.

Thirdly, it is based on a Game Driver that has a VM that can ‘compile’ or translate
changes made to the Game Objects, written in the LPC programming language by
the players, into LPC code. While the game was being played and without the need
to shut it down. Even if there were errors during ‘compiling’ or executing instruc-
tions written in LPC code.

Fourthly, this Game Driver can start another VM that can execute LPC code
whenever one VM fails. So if there were any errors executing the code of one Game
Object, the Game Driver reports the error and starts another VM to carry on execut-
ing the code of other Game Objects.

Nevertheless, you can bring most of these advantages into the Event-Database
Architecture by adapting or customising it.

Firstly, you can use a VM too to compile code for Game Objects, written in the
LPC programming language by the players, into LPC code. And you can put the

Greater simplicity due to less components,
only 4 i.e. Game Driver, MUD Library,
Master Object, Documentation.

Greater complexity due to more components, 9
i.e. 8 Host Modules and a Game Database.

Based on the LPC programming language. Not based on any programming language.

Based on a Game Driver with a Virtual
Machine or VM that ‘compiles’ or translates
instructions in the programming language
into LPC code or pseudo machine code.

Not based on any VM that ‘compiles’ or
translates instructions in a programming
language.

Based on a Game Driver with a VM that
executes LPC code and can recover from
errors executing code.

Not based on any VM that executes code.
Therefore, it cannot recover from errors
executing code.

VM can be built and run on different computer
hardware.

Not based on VM but can be built and run on
different computer hardware.

Text User Interface. Text and Graphical User Interface.

User Interface only allows for commands
through keyboard.

User Interface allows commands through
keyboard, mouse, and other Game Controllers.

Game Database is a hierarchical database Game Database is a Relational Database

TABLE 1.2 (Continued)
Comparison between the Original Software Architecture of LPmud and the
Event-Database Architecture

LPmud Software Architecture Event-Database Architecture

34 Event-Database Architecture for Computer Games

results in the Game Database of the Architecture, next to the properties of each
Game Object. Each Game Object has a Database Field called the Game Object
Code Field which can be used to store ‘compiled’ LPC code. See the chapter 3.3
Objects Host in the book Event-Database Architecture for Computer Games
Volume 1.

Secondly, you can modify the Objects Host to start a VM to execute the LPC
code of each Game Object it fetches from the Game Database, to perform Actions
in response to Secondary Events. And if there were any errors executing the code,
the Objects Host would report the error and start another VM to carry on executing
other code. And the game can carry on running 24 hours a day without having to
shutdown.

Thirdly, you could use the principles and components of the software architec-
ture of LPmud to help you set the rules for generating the system of Events and
Game Objects for building the game based on the Event-Database Architecture.

1.3.1 R ules for Generating the System of Events

The standard software procedures, which are used in the software architecture of
LPmud, are analogous to Events in the Event-Database Architecture. These stan-
dard software procedures are used in LPmud to describe common properties that an
item in the game may have with other items. These are also used to describe common
properties that a character, or a location, in the game may share with other characters,
or locations. Similarly, in the Event-Database Architecture, Secondary Events
describe common properties that a Game Object may have with other Objects.

For example, if an item could be picked up in a game, then its Game Object
would have a Secondary Event that the Object would receive. This Event would be
received by the Object when a character tried to pick it up. And all other Objects,
which could be picked up, would have a similar Event. And these would all follow
on from the same Primary Event.

Likewise, imagine an item in a game that could be destroyed by the lava from a
volcano. The Game Object of the item would have a Secondary Event that it would
receive, when the volcano erupted. And all other similar Game Objects would have
a similar Event. And these would all follow on from the same Primary Event.

So, like the standard software procedures of the software architecture of LPmud,
Secondary Events describe common properties that a Game Object has. Thus, to
produce the technical design, for the game design of LPmud, you could use these
standard procedures. You could use these to decide on the initial set of Secondary
Events that the Game Objects, of your Event-Database Architecture, would have.
This would give you the following Secondary Events:

1.	An OBJECT INITIAL RESET EVENT, which would be received by a
Game Object, when it was loaded into the computer memory;

2.	An OBJECT PERIODIC RESET EVENT, which would be received
by a Game Object, typically once every 24 hours, when a character was
returned back to its initial position, or a location was returned back to its
original state;

35LPmud Software Production Process

3.	An OBJECT ENTERED EVENT, which would be received by a Game
Object, when it came into close proximity of a character;

4.	An OBJECT EXITED EVENT, which would be received by a Game
Object, when it moved away from a character;

5.	An OBJECT HEARTBEAT EVENT, which would be received by
a Game Object, when some fixed multiple of the Unit of game time
had elapsed e.g. during each round of combat;

6.	An OBJECT MOVED EVENT, which would be received by a Game
Object, when it was about to be moved;

7.	An OBJECT TAKEN EVENT, which would be received by a Game
Object of an item, when that item was about to be picked up by a character
in the game;

8.	An OBJECT DROPPED EVENT, which would be received by a Game
Object of an item, when that item was about to be dropped by a character;

9.	An OBJECT LOOKED EVENT, which would be received by a Game
Object, when a player looked at it in detail;

10.	An OBJECT INVENTORY EVENT, which would be received by a
Game Object of a character or container, when a player looked at the items
being carried by that character or container;

11.	An OBJECT USED EVENT, which would be received by a Game Object
of an item, when a player wanted to wield that weapon, wear that piece of
clothing or otherwise use that item being carried by the player’s character;

12.	An OBJECT UNUSED EVENT, which would be received by a Game
Object of an item being wielded, worn or otherwise used by a player’s char-
acter, when that item was no longer being used;

13.	An OBJECT HEARD EVENT, which would be received by the Game
Object of a character, when that character received a private or public mes-
sage from other characters;

14.	An OBJECT ATTACKED EVENT, which would be received by the Game
Object of a character, when that character was about to be attacked by another;

15.	An OBJECT PACIFIED EVENT, which would be received by the Game
Object of a character, when that character had run away from combat, the
character’s opponent had fled or the opponent had died;

16.	An OBJECT DEAD EVENT, which would be received by the Game
Object of a character, when that character had died; and

17.	An OBJECT DESTROYED EVENT, which would be received by a
Game Object, when it was about to be removed from the computer mem-
ory or permanently from the Game World.

Each Game Object which needed one would have its own set of these Secondary
Events. For example, not all Game Objects would require an Object Heartbeat
Event. This would only be used by Game Objects which had to act spontaneously
(without waiting for an Event). The Game Object of a NPC, which could move around
the world, would use such an Event. And even then, it would only use the Object
Heartbeat Event when it wanted to move around. When the character stopped moving
around, the Game Object would stop itself from receiving this Event.

36 Event-Database Architecture for Computer Games

Another example would be two characters involved in a fight. Each character
would use the Object Heartbeat Event to deal one blow to the other, during each
round of combat.

Each of these Secondary Events, which a Game Object would receive, would
be linked to a Primary Event. These would either be the standard Primary Events,
generated by the Host Modules. Or these would be the new Primary Events that
would be produced by one of the Game Objects, added to the Event-Database
Architecture.

For the game design of LPmud, the initial set of Primary Events, including both
the standard and the new ones, would be the following:

1.	An Initial Reset Event, which would signal the beginning of a game, and
more;

2.	A Connect Event, which would be sent when a Game Controller was con-
nected to the computer hardware;

3.	A Disconnect Event, which would similarly be used as standard;
4.	A Controller Moved Event, which would also be used as standard;
5.	A Controller Stopped Event, which would be used as standard;
6.	A Controller Pressed Event, which would be used as standard;
7.	A Controller Released Event, which would be sent when a digital device

on a Game Controller was released, and more;
8.	A Collision Event, which would be used as standard;
9.	A Proximity Event, which would be sent when a Game Object had come

within, or moved beyond, a set area around another Object, and more;
10.	A LOADED EVENT, which would be sent when new Game Objects had

been loaded into the computer memory;
11.	An UNLOADED EVENT, which would be sent when old Game Objects

had been removed from the computer memory;
12.	A PERIODIC RESET EVENT, which would be sent after a long interval

had passed (i.e. 24 hours), and the moment had arrived to reset a character
or item in the Game World back to its original position, or a location back
to its original state;

13.	A HEARTBEAT EVENT, which would be sent after a short interval had
passed (i.e. less than ten times the Unit of game time), and the moment had
arrived for a character, an item or a location, to act spontaneously;

14.	A MOVED EVENT, which would be sent when an item or a character was
about to be moved;

15.	An End Event, which would be used to signal the end of a sequence of
Events, and more; and

16.	A Shutdown Event, which would be used as standard.

Most of the standard Primary Events, of the Event-Database Architecture,
would not be linked to the initial set of Secondary Events. The exceptions would be
the Controller Released Event, the Proximity Event and the End Event.

When the Primary Controller Released Event was sent, it would in turn send
either Object Taken Events or Dropped Events, to the Game Objects of items. This

37LPmud Software Production Process

would depend on whether one of the buttons, just pressed and released, was a com-
mand to pick up or drop the items. Similarly, this Primary Event would send Object
Looked Events to the Game Objects of items, characters or locations, when the
player looked at these. It would send Object Inventory Events to the Game Objects
of each character, or container, when the player examined what that character or
container was carrying. It would send Object Used Events to each Game Object
of an item being carried, when a character wielded that weapon, wore that piece of
clothing or otherwise used that item. Likewise, it would send Object Unused Events
to the Game Objects of these items, when these items were no longer being used.

The Primary Controller Released Event would also send Object Heard Events
to each Game Object of a character, when another character sent that character a
public or a private message. It would send Object Attacked Events to each Game
Object of a character, when another character attacked that character. Finally, it
would send Secondary Events to the Game Object of each shop, when an item was
being bought or sold in that shop. And it would send Secondary Events to the Game
Object of each player’s character, when that player quit the game.

When the Primary Proximity Event was sent, it would in turn send Object
Entered Events or Exited Events to the Game Objects of the items, the characters
or the locations. This would depend on whether a player came near, or moved away
from, these items, characters or locations.

When the Primary End Event was sent, it would in turn send Object Pacified
Events or Dead Events to the Game Objects of the characters. These would depend
on whether a character had run away from combat, the character’s opponent had fled
or the character had died.

Although not all the standard Primary Events, of the Event-Database
Architecture, would be linked to the initial set of Secondary Events, all the new
ones would be. These include the Primary Loaded Event, the Unloaded Event, the
Periodic Reset Event, the Heartbeat Event and the Moved Event.

When the Primary Loaded Event was sent, it would in turn send the Object
Initial Reset Events. These would be sent to the Game Objects of the items, the
characters or the locations which had just been loaded in the computer memory.

When the Primary Unloaded Event was sent, it would in turn send the Object
Destroyed Events. These would be sent to the Game Objects of the items, the char-
acters or the locations which were about to be removed from the computer memory.

When the Primary Periodic Reset Event was sent, it would in turn send the
Object Periodic Reset Events. These would be sent either to any Game Object of a
character which needed to be reset back to its initial position. Or these would be sent
to any Game Object of a location which needed to be reset back to its initial state.

When the Primary Heartbeat Event was sent, it would in turn send the Object
Heartbeat Events. These would be sent to any Game Object of an item, a character
or a location which needed to act spontaneously.

When the Primary Moved Event was sent, it would in turn send the Object
Moved Events. These would be sent to the Game Objects of the characters or the
other items which had just been moved.

As has already been mentioned, some of the standard software procedures, used
in the software architecture of LPmud, are not used by other games based on that

38 Event-Database Architecture for Computer Games

architecture. The standard procedure for moving the characters or the other items
in a game and the procedure for destroying the characters or the other items are
two examples. And these are sometimes omitted from the design of the game. So,
similarly, you could omit the Object Moved Event and Destroyed Event from the
technical design of LPmud.

1.3.2 R ules for Generating the System of Game Objects

There would be only two sets of software modules in any software design based on
the Event-Database Architecture. Similarly, in the technical design, that would be
used to build the game design of LPmud; these would namely be the Host Modules
and the Game Objects. The Host Modules have already been described in the
chapter The Software Architecture in the book Event-Database Architecture for
Computer Games Volume 1. From these descriptions, you would be able to decide
what software procedures would be in these software modules. And you would be
able to decide what data would be transferred from, and to, each procedure.

When it comes to the rest of the software modules, used with the Architecture,
these would normally be determined by the system you choose for breaking down
the features of a game design into Game Objects. Indeed, you may find it convenient
to select the Game Objects before you decided on the Events you were going to use.
Remember that both, the system of Game Objects and the system of Events, would
merely be levels of Abstraction.13 And in this respect both would have a similar
function. This is not to say that one should ever be neglected for the other. But to
say that both would merely be different ways, of providing a simple view of how the
game would be built, by concentrating on some components of the Architecture,
and ignoring others. And as such, it would not matter which one you decided to
describe first.

However, in this particular example, the software architecture of LPmud already
provides a system for choosing the Events, so you do not need to decide on the
Game Objects first. Furthermore, the software architecture also provides a sys-
tem for choosing the Game Objects of an Event-Database Architecture too. This
comes courtesy of the fourth principle of the software architecture.

The fourth principle requires that each game module be associated with a loca-
tion, a character or some other item in the Game World, and that all of these be
interchangeable. This means, for the Event-Database Architecture, that it should
be possible for all Game Objects to become a location, a character or some other
item in the Game World. This may at first hand seem to be a problem or counter-
intuitive. But this becomes clearer when you realise that most games do depend on
visible locations, characters and other items, which interact with each other, within
one consistent world.

The software modules used in most games can be broken down into two sets.
The first are the set which directly control or affect the visible Game World. These
include the different locations, the characters and the other items in each location.
The second are the set which support the visible Game World. These either man-
age, or are used by, the visible locations, the characters or other items in the world.
It would seem natural for the first set to be placed in the Game World, but for the

39LPmud Software Production Process

second set it seems unnecessary. It could also cause undesirable side-effects if the
second set were somehow to become visible to the players. Or it could cause incon-
sistencies if the second set interacted with the Game World, like the visible charac-
ters or other items.

However, there would be at least two ways to solve this problem, within the
Event-Database Architecture. Either you could simply combine software modules
from the second set, with the first set. So each software module in the game would
be associated with a visible location, character or other item. Or you could attach
the second set of modules to invisible items, which neither the bodies in the visible
Game World, nor the User Interface, could interact with. So that if, for any reason,
any of these were to appear in the Game World, it could not interfere with the game.

Either of these two methods has been used in the software architecture of LPmud.
Each method has the advantage that you can easily find and fix any errors by follow-
ing it. This comes courtesy of the fact that each location, character or other item in
the game has one software module associated with it. So whenever you encounter
an error with a location, a character or another item, you simply find the software
module associated with it and fix it. This is made easier if it is possible for you
to see the identity of the software module, used to create each location, charac-
ter or item, as you move through the game. And, indeed, you can create a tool,
with the LPC language, that allow you to do just that. This is called a Scan Tool in
the LPmud software architecture. This identifies all the files used to create each
visible and invisible Game Object in a location, character or container. But in the
Event-Database Architecture, since you identify Game Objects by the Primary
Key in the Database, and this is related to the Database Host, it is better called
INTERNAL DATABASE HOST QUERY CUSTOM TOOL. You can add this
tool as an item in a Game World, which the player or Wizards (i.e. highest level play-
ers or Software Developers who administer the game) can use.

The Scan Tool allows the player or Wizard to see the identity of even invisible
Game Objects. So even if you use the latter of the two methods, you can still easily
find and fix errors. The software modules that only constitute one part of a location,
a character or another item would appear as invisible items in the Game World.
However, the tool can scan the contents of any location, character or container and
reveal the identity of every visible or invisible items in it. The tool can also display
all the software modules that were used to build each location, character or item in
the Game World.

Similarly, for the Event-Database Architecture, you could choose your Game
Objects based on the fourth principle of the software architecture of LPmud. You
could either associate each location, character or other item with one visible Game
Object. Or you could compose each from one visible Game Object and several
invisible Game Objects, which the locations, the characters or other items could
not interact with. You could also include one Game Object that would act as an
Internal Database Host Query Custom Tool. This tool would appear as an item in
the game that could be used by the players or Wizards. It would identify the Game
Object of any visible location, character or other item, by the Primary Key of the
Record which held the properties of that Object. And it would also identify any vis-
ible or invisible items amongst the contents of that location, character or other item.

40 Event-Database Architecture for Computer Games

The fourth principle, of the software architecture of LPmud, still applies even
when the game does not have a conventional world. Since the game design of LPmud
incorporates a world of magic and fantasy, this is often the case. That is to say, the
game does not have one consistent world. Instead, the Game World is made up of
rooms. And each room may be used to symbolise as large or as small a space as
you like. This means either different spaces in the Game World may overlap. Or the
Game World may vary from one set of dimensions to another, from two dimensional
space, to three, or four dimensional space.

For example, suppose you reached that public house, described earlier in the
game design of LPmud. And you could join the other characters gambling at the
table, in a game of poker. Now such a game could be represented on a computer, in
one consistent three-dimensional world. But it would not be necessary. All that mat-
ters would be the hand each player had, the bets placed and the size of the pot. So
the User Interface for such a game could simply list the hand each player had, the
bets, and the name of each player, next to each hand or bet. The position of the cards,
displayed on the computer screen, would not have any bearing on where these were
in the Game World. Nor would these positions reflect where the players were. These
positions would merely be symbolic, not literal.

In a multiplayer version of such a game, the view each player had of the space con-
taining the cards would not be consistent. When the game began, from one player’s
view, only his or her cards would be visible: all the cards of any opponent would be
face down. But, for each opponent, that player’s cards would be face down, as would
all others, except his or her cards.

Although it would be difficult to represent such a game, according to the fourth
principle of the software architecture of LPmud, it would not be impossible. The first
obvious solution would be to have one set of Game Objects for each player and use
the computer screen as the Game World. So that each Object would be associated
with one card, as seen by one player in the game. And the position of each Object on
the computer screen would reflect the position of the card in the Game World. Then,
depending on who was looking at the cards, one set of Game Objects would be shown,
and the rest would be invisible. Furthermore, the cards in the visible set, belonging to
that player, would be shown face up. The rest of the cards would be shown face down.

Alternately, you could have one set of Game Objects for all the players. Then,
depending on whether a player could see a card or not, each Game Object would
change its appearance. Each card would either be shown face up or face down.

The latter of the two solutions would be the one which most commercial games,
based on the Software Evolution Process, would adopt; in order to reuse as much
software as possible. However, both solutions mean that the appearance of each
Game Object would depend on the player. This conflicts with the first and the fourth
principles of the software architecture of LPmud.

Remember that the first principle requires that any common properties that the
locations, the characters or other items shared should be described using a stan-
dard software procedure. One of these standard software procedures describes the
appearance of a location, a character or some other item. It displays the item to the
player, when he or she looks at it. But, for this game of poker, both solutions require
that the appearance of each card depends on the player. So the standard software

41LPmud Software Production Process

procedure displaying that card cannot give a consistent description. Furthermore,
any two players who see that card cannot recognise that it comes from the same
software module. These two failures violate the first and the fourth principles of the
software architecture, respectively.

This is why the software architecture of LPmud would favour a third solution. A
solution which kept any two players’ view of the cards separate would be consistent
with its principles. This would have to be a solution in which the appearance of a
card, to the players involved in the card game and those not in the game, remained
the same. This would be better suited to the Event-Database Architecture too.
It would ensure that Events from one view did not inadvertently affect another.
Besides, unlike the software architecture of LPmud, a Game Object could not tell
when it was being viewed, and by whom.

The third solution would involve placing different symbolic views, of the card
game, in separate locations of one Game World. So that each location would contain
the view of the cards as seen by one player involved in the card game. And if any
other players came to that location, they too would see the same cards. Each view
would be isolated from other views, by a natural or an artificial barrier. Either each
view could be isolated by great distances, to prevent Game Objects, placed in one
view, conflicting with Objects in another view. So, for example, an Object Entered
Event, an Object Exited Event or an Object Moved Event, for one set of Objects,
would not cause similar Events for another set of Objects. Or each view could be
isolated by a physical barrier around it. So that the Game Objects were prevented
from escaping to, or entering from, another view.

1.3.3 A pplication: Visible and Invisible LPmud Game Objects

The fourth principle of the software architecture of LPmud does provide a useful
requirement for choosing Game Objects. However, the breakdown of the Game
Objects, used to implement the game design of LPmud, would have three more
requirements to meet. These requirements would apply to any game that used the
Event-Database Architecture too. These come from the description of the Physics
Host, the Graphics Host and the Game Controllers Host.

The first requires, amongst other things, a Game Object to have a mass, a posi-
tion, a speed and an acceleration, in order to move it. The second requires, amongst
other things, visible Objects to have a Texture or a 3D model. It also requires two
Camera Objects, in order to view the Game World. The third requires, amongst
other things, an Object to have numerical properties (e.g. a position) which could
be manipulated by a Game Controller. It also requires this Object to have a set of
Secondary Events it would receive, when an analogue device or a digital device
was being used.

So, considering all these requirements, the properties of the Game Objects, for
the game design of LPmud, would be the following:

1.	An INVISIBLE 2D POINT OBJECT. This would be used to mark an
important point in 2D space. Its properties would be stored in a special
POINT OBJECT RECORD. It would have a mass, the position of a point

42 Event-Database Architecture for Computer Games

in a 2D world and an orientation (i.e. its rotation about its centre). It would
have horizontal and vertical speeds (or X and Y speeds). And it would have
X and Y accelerations, a rotational speed and a rotational acceleration. It
would also have the shape of its Collision boundary14 (e.g. square circle or
some other 2D shape), the shape of its Proximity boundary,15 a Collision
Event and a Proximity Event. Lastly, it would have the Object Initial
Reset Event and the Object Destroyed Event that it would receive. These
would be sent when it was loaded into, or removed from, the computer
memory.

2.	An INVISIBLE 3D POINT OBJECT. This would be used to mark an
important point in 3D space. Its properties would also be stored in a special
Point Object Record. It would have a mass, the position of a point in a 3D
world and an orientation. The orientation would include a pitch, a yaw and
a roll (i.e. a rotation about its local X, Y and Z axes). It would have a speed
along the breadth, the height and the depth of the Game World (i.e. an X,
Y and Z speed), and an angular speed around its local X, Y and Z axes. It
would also have an X, Y and Z acceleration, and an angular acceleration
around its local X, Y and Z axes. And like a 2D Point Object, it would have
the shape of its Collision boundary (e.g. sphere, cube, cylinder or another
3D model), the shape of its Proximity boundary, a Collision Event and a
Proximity Event. It would also have the Object Initial Reset Event and
the Object Destroyed Event that it would receive.

3.	A Master Object derived from (1). This would monitor the occurrences
of any non-standard Primary Events that would be used by the Event-
Database Architecture. And it would send these Events to the Events Host.
It would have the oldest Game Object loaded into the computer memory,
and the last Object loaded into the memory. It would also have an Object
Heartbeat Event, and an Object Periodic Reset Event.

4.	A TEXT OBJECT derived from (1). This would be used to display
words at a given point in a 2D world. Each Object would refer to a TEXT
LOCALISATION RECORD that held the words in different regional lan-
guages. It would have the font, the shape and the position of its characters.
It would also have the Texture coordinates of its characters in the font, the
words of the text, its colour, its size and its width.

5.	A 2D IMAGE OBJECT derived from (1). This would be used to display
an image at a given point in a 2D world. This includes an icon, a picture
or an item on a menu. This also includes a location in the game, an item, a
building or other structures in a location. It would have the ID of the image
that would be displayed and its shape. It would also have the Texture coor-
dinates and the size of the image.

6.	A 2D ANIMATION OBJECT derived from (5). This would be used to
display the animation of an item, a character, a building, other structures
or a location, at a given point in a 2D world. It would have the ID of each
polygon, within which the images (or Frames) would be displayed. It would
have the ID of each Frame that would be displayed. It would have the ID of
the Texture coordinates of each Frame. It would have the rate at which the

43LPmud Software Production Process

Frames would be displayed, how long a single animation sequence would
last and how much time had elapsed since the sequence started. Finally, it
would have a Secondary End Event that would be sent when the sequence
had finished.

7.	A 2D Player Object derived from (6). This would be used to display a
player’s character, other characters or creatures, in a 2D world. It would
have the properties of the Game Controller that would direct the character.
These would include a list of the analogue devices and the digital devices
that affected the properties of the character. These would also include a
list of the properties (e.g. the speed of the character) that were affected by
these devices. It would include how much these properties were affected,
when the analogue devices were moved to the highest and the lowest point,
along an axis. And it would include how much the properties were affected
when the digital devices were pressed. It would include the range of move-
ment, about the default position, within which an analogue device would be
ignored. It would include a history of the analogue devices that had been
moved, and the position of the devices each time this occurred. It would
also include a history of the digital devices that had been used, and the
times these were used. Finally, it would include the Secondary Connect,
Disconnect, Moved, Stopped, Pressed and Released Events that the
Object would receive, when the Game Controller was manipulated. Along
with the properties of the Game Controller, the Object would have the
properties of the character. These would include how much health points
the character had left, a list of the items it was using, a list of the items it
was carrying in its inventory, and its score.

8.	A 3D MODEL OBJECT derived from (2). This would be used to display
a 3D model of an item, a building, other structures or a location, at a given
point in a 3D world. It would have the ID of the model that would be dis-
played, its Texture, a set of Texture coordinates and the size of the model.

9.	A 3D ANIMATION OBJECT derived from (8). This would be used to
display the animation of an item, a character, a building, other structures
or a location, at a given point in a 3D world. It would have the changes of
vertices, between each Frame in the animation sequence and the size of
each set of changes. It would have the rate at which the Frames would be
displayed, how long a single sequence would last and how much time had
elapsed since the sequence started. It would also have a Secondary End
Event for when the sequence had finished.

10.	A 3D Player Object derived from (9). This would be used to display a play-
er’s character, other characters or creatures, in a 3D world. It would have
the properties of the player’s Game Controller. These would include a list of
the analogue devices and digital devices that affected the properties of the
character. These would also include a list of the properties (e.g. the speed of
the character) that were affected by the devices. It would include how much
these properties were affected, when the analogue devices were moved to
the highest and the lowest point, along an axis. And it would include how
much the properties were affected when the digital devices were pressed.

44 Event-Database Architecture for Computer Games

It would include the range of movements, about the default position, within
which an analogue device would be ignored. It would include a history of
the analogue devices that had been moved or stopped, and the position of
the devices each time this occurred. It would also include a history of the
digital devices that had been used, and the times these were used. And
it would include the Secondary Connect, Disconnect, Moved, Stopped,
Pressed and Released Events that the Object would receive, when the
Game Controller was manipulated. As well as the properties of the Game
Controller, the Object would have the properties of the character. These
would include how much health points the character had left, a list of items
it was using, a list of items it was carrying in its inventory and its score.

11.	A 2D Camera Object derived from (1). This would be used by the Graphics
Host to display a view of a 2D world. It would hold the position of the cam-
era, the width and the height of the area visible around it.

12.	A 3D Camera Object derived from (2). This would be used by the Graphics
Host to display a view of a 3D world. It would have the angle of the Field of
View,16 a near and far focal length.17

As well as the properties already described, each copy of these Game Objects,
in the Game World, would have an ID. This ID would be the Primary Key of the
Record which held its properties, in the Game Database. The ID would be used
throughout the Event-Database Architecture, by the Host Modules and all other
Game Objects, to refer to that Object.

The first Game Object that would react when the game started would be the
Master Object. When it received the Primary Initial Reset Event, the Master
Object would start generating the Primary Heartbeat Event periodically, for other
Game Objects to use. Any Game Object, which wanted to respond to this Event,
would add its own Object Heartbeat Event onto the list of Secondary Events for
the Primary Heartbeat Event. The Master Object itself would always have its
Object Heartbeat Event on this list. It would use this to check when the other
new Primary Events had occurred. These would namely be the Primary Loaded
Event, the Unloaded Event, the Periodic Reset Event and the Moved Event.

The oldest Game Object, and the last Game Object, loaded into the computer
memory would be part of the properties of the Master Object. As mentioned in the
basic description of the Event-Database Architecture, the Database Host has two
Database Records in the Game Database. One is called the Residents List Record
and the other is called the Absents List Records. These Records would keep a list
of all the other Records in the Game Database currently loaded into, or unloaded
from, the computer memory. So that the Database Host could tell when a Record
was being accessed that was not in the memory. The Master Object too could use
these two Records.

The Master Object could use these two Records to track the set of Game Objects
loaded into, or unloaded from, the computer memory. And when it detected that the
set had changed, it would send the Primary Loaded Event to the Events Host,
for the Game Objects that had just been loaded. Or it would send the Primary
Unloaded Event for the Game Objects which had just been unloaded.

45LPmud Software Production Process

Before sending the Primary Loaded Event, the Master Object would first gather
a list of the Object Initial Reset Event, of the Game Objects which had just been
loaded into the memory. It would then add these to the list of Secondary Events
of the Primary Loaded Event. Similarly, before sending the Primary Unloaded
Event, it would gather a list of the Object Destroyed Events, of the Game Objects
which had just been removed. And it would add these to the list of Secondary Events
of the Primary Unloaded Event.

The Master Object could compile a list of the Game Objects just loaded into,
or unloaded from, the computer memory by using the list of the Records currently
loaded or removed from the memory. Both of these lists could be ordered so that
the latest addition was at the beginning, and the oldest was at the end. Hence, from
knowing the oldest and the latest member of the set of Game Objects loaded into
the computer memory, the Master Object could tell when the set had changed.
This would be when the oldest Game Object, or the latest Game Object, had
changed. And the list of the Objects removed would include the previous oldest
Game Object and all the Objects after it, in the list of Records removed from the
memory. Likewise, the list of the Objects loaded into the memory would include
all the Game Objects, after the previous latest Object, in the list of Records
loaded into the memory.

As well as its Object Heartbeat Event, the Object Periodic Reset Event, of
the Master Object, would be amongst those sent when the game started. This
Secondary Event would have a delay equal to the length of the intervals between
each Primary Periodic Reset Event i.e. 24 hours. Each time it received the delayed
Object Periodic Reset Event, the Master Object would send the Primary Periodic
Reset Event. This in turn would cause the Object Periodic Reset Event, of the
Master Object, to be sent again. So the Master Object would use this to continu-
ously generate each Primary Periodic Reset Event that the other Game Objects
would use.

Finally, the Master Object would periodically search through the list of Game
Objects being moved by the Physics Host. Remember that the description of the
Physics Host required a Record, in the Game Database, that held a list of Game
Objects whose movements it would control. If the Master Object detected any
Game Objects on this list with any amount of speed, it would assume that the
Object was about to be moved. So it would add the Object Moved Event, of that
Game Object, onto the list of Secondary Events of the Primary Moved Event.
This would be provided that the Event was not already on the list. After it had simi-
larly searched the entire list being moved by the Physics Host, the Master Object
would send the Primary Moved Event.

Once a Game Object had no speed, or had been removed from the list being
moved by the Physics Host, it would presumably have stopped. So the Master
Object would remove its Object Moved Event, from the list of Secondary Events
of the Primary Moved Event. One Game Object could conceivably move a second
Object without using the Physics Host. In that case, the first Game Object would
have to add the Object Moved Event of the second one, onto the list of Secondary
Events for the Primary Moved Event. And it would remove the Event from that
list, once it had stopped moving the second Object.

46 Event-Database Architecture for Computer Games

The movement of some Game Objects may be accompanied by animation. For
example, a 3D Player Object could be required to show an animation of the play-
er’s character walking, each time it was moved. But, by design, the Player Objects
would only show static characters. So in order to show an animated character, a 3D
Animation Object could be superimposed onto the 3D Player Object. That is, both
Objects would always share the same position, as well as speed and acceleration in
the Game World. But only the 3D Animation Object would be visible at that posi-
tion. And either each time a Game Controller was used to move the Player Object,
it would in turn pass that movement onto the Animation Object. Or each time the
Player Object received its Object Moved Event, it would pass on its movement onto
the animated Object.

Of course the game design may change. The game design of LPmud offers the
Wizards the ability to add their own areas to the game, once they have attained the
highest level of experience that can be achieved. So they could add more elements to
the User Interface. They could add more locations to the Game World. They could
add more characters, creatures and items lying around in these new locations. All of
these additions would require more Events and Game Objects.

However, whatever additions the Wizards wanted to make, they should use the
same system for selecting Game Objects that has been used so far. Every visible
item lying around, character, creature, building, other structures, or location should
have one visible Game Object. Each of these may work with several other invisible
Game Objects, depending on how complex it was. These invisible Game Objects
may either be unique to that visible Game Object. Or these may be used by mul-
tiple visible Game Objects. Nevertheless, in the former case, these invisible Game
Objects should be placed in the same location, in the Game World, as the visible
Game Object. So that any Wizard that goes to that location can use an Internal
Database Host Query Custom Tool to scan the location and find all of the Game
Objects responsible for that location. And in the latter case, the invisible Game
Objects should all be placed in one central location e.g. the origin of the Game
World. And all similar, invisible Game Objects should be placed in that same loca-
tion. So that any Wizard that goes to that location can use the Internal Database
Host Query Custom Tool to scan the location, and find all of the shared Game
Objects responsible for the Game World.

When adding to the game design, the Wizards should also use the same system
for selecting Events that has been used so far. Each common property (i.e. common
action) that may be performed on an item, a character, a creature or a location should
have a common Secondary Event. Some of these common actions may occur natu-
rally. For example, an item or a location may disappear and reappear at various times
by magic. Or an item or a character may be destroyed by a hazardous location. Each
of the Game Objects of the items, characters, creatures or locations should have a
similar Secondary Event for when these common actions occur.

Some of these actions may also occur artificially. These would namely be when
commands were issued by the characters (or creatures) in the game. For example, an
item or a creature may appear in a shop, when it has been bought by a player’s char-
acter. If a character could interact with another character, an item, a building, other
structures or a location, then that character should have the commands available to

47LPmud Software Production Process

do so. And each of these commands should have a Secondary Event. Each Event
should be received by the Game Object of the other character, the item, the building,
the structure or the location, when the command was used.

The Primary Event for the commands used by a character should be the standard
Controller Released Event. And this should be produced by the 2D or 3D Player
Object of that character. This would be consistent with the system used so far. For all
new Secondary Events, an existing Primary Event should be used where possible.
Only when it would not be consistent to use any of the existing Primary Events, to
generate a Secondary Event, should a new one be added for that purpose.

1.3.4 A pplication: AI with Path Finding

It may seem strange how you could implement some features of game using a set of
Events, and Game Objects, operating in a Game World. One such example would
be a character, in the game, controlled by the computer, or an NPC.

An NPC would normally have an appearance and spacial properties. So it could
naturally be represented by one of the Game Objects, selected using the fourth
principle of the software architecture of LPmud. This requires all game modules
(and hence Game Objects) to have spacial properties. That is to say, it should be
possible for each Game Object to be placed in the Game World and interact with
the world and other Objects. But the most difficult challenge, posed by an NPC,
would be how to make it act intelligently. Intuitively, this would seem to require
a lot of purely logical software procedures, which used no spacial data. That is
to say, this would seem to require lots of decisions to be made, with lots of logic
branches. Therefore, you could require a lot of Events and Game Objects in the
Event-Database Architecture.

Unfortunately, what those in the Computer Games industry who follow the
Software Evolution Process call Artificial Intelligence suffers from the same lack
of definition, as the very games that they spawn. In the Computer Games industry,
the word ‘Artificial’ is taken in this context to mean ‘the illusion of’, as supposed
to ‘a substitute for’. An illusion only has to appear like something else. An illusion
does not have to function like it. However, a substitute does not have to appear as
something else. More importantly, a substitute must function just like it. An illusion
is effective while you do not interact with it. Once you do interact with it, how it
functions, or does not function, distinguishes it from what it is imitating. The time
taken to reach this point, however, can be extended by adding more and more layers
of illusions. And this is what happens in the Computer Games industry.

In the beginning, all that would be asked of the Artificial Intelligence (or AI)
would be that it should just manage to play the game, like a normal player. Later on,
when it has become apparent that it would be easy to beat the AI, the AI would be
required to reach a state where it could not be easily beaten. After that, when the AI
has consistently beaten all players, it would be required to vary its performance, so
that it would play badly when it was winning, and unbelievable well when it was los-
ing. Playing badly, when it was winning, would mean that the AI has to periodically
act irrationally. Playing unbelievable well, when it was losing, would mean that the
AI has to cheat. So the AI would start of being asked to play like a normal player and

48 Event-Database Architecture for Computer Games

provide a challenge. But in the end, it would neither behave intelligently, nor would
it play like a normal player. It would merely become a vehicle for giving the player
the illusion of a challenge.

The complexity of creating the illusion of intelligence blurs the limitations
of the AI being developed for a game. The complexity turns it into an abyss into
which schedules enter, never to return. Another result, of the complexity, is that
the AI is not thought of as a simple logical, reasoning machine. Instead, it relies
on spacial data. This data closely relates to some other visible spacial Game
data, such as the 2D or 3D shape of the Game World. Whenever this Game data
changes, the data required for the AI needs to change as well. Editing this data
wastes a lot of time because of this close relationship. This is bad enough. But
even worse can happen.

Since the development of the AI proceeds through more of an experimental pro-
cess, rather than a carefully planned one, unforeseen problems can occur at a later
stage. For example, the AI may have trouble negotiating some part of the Game
World, because of an awkward obstruction. The AI could be revised to cope with the
problem. But at the latter stages of the Software Evolution Process, the complexity
of the AI becomes unwieldy. So instead, the obstruction either disappears from the
Game World, or the Game World changes to prevent the possibility of the problem
occurring. At this point, the AI becomes something the game must negotiate, rather
than the other way round.

However, the end result is that you could use Game Objects, with spacial data,
to implement the typical, crude Artificial Intelligence used in the Computer Games
industry. A brief example of how this could be done would be in the giant arena
described earlier, in the game design of LPmud, where the player had to race against
other chariots.

To get an AI to navigate a track around the arena, you could define a set of points
or Game Objects (sometimes called Waypoints18) around the track. These should
be placed, along a lane, travelling around the track in the order that you would need
to follow them to complete a lap. The points should be numbered in the order the
chariots travel around the track. The position, the ordinal number, the lane and other
properties of each Waypoint would be stored in its Game Object Record.

When a race starts, the AI would simply drive the chariot in a straight line towards
the first Waypoint in the lane the chariot was in. This would be its initial target. The
AI would use the commands i.e.

Forwards Command
Backwards Command
Turn Left Command
Turn Right Command

To head towards this target or Waypoint along the track. By sending the six stan-
dard Secondary Events

Secondary Connect Event
Secondary Disconnect Event

49LPmud Software Production Process

Secondary Controller Moved Event
Secondary Controller Stopped Event
Secondary Controller Pressed Event
Secondary Controller Released Event

To the Master Player Object to simulate the analogue devices or digital devices
on the Game Controller being used to evoke the commands.

And it would include the following in the properties of these Secondary Events:

1.	 the cause of the Event was the 2D Player Object or 3D Player Object of
the character being controlled by the AI

2.	 the unique word identifying the analogue device or digital device of the
Game Controller that had been connected, disconnected, moved, stopped,
pressed or released to evoke a command

3.	 the amount the device had been moved along its axis.

And the Master Player Object, in turn, would respond to these Events by modi-
fying the physical properties of that Player Object. And forwarding these Events
onto that Player Object. To get the character’s chariot to accelerate, decelerate, turn
left or turn right towards the target.

When the character came within a set distance of this, the target would
change to the next Waypoint in the lane. And the AI would drive the chariot in
a straight line towards that Waypoint. And when the AI came within distance of
this, the target would change again to the next Waypoint, and so on. Using this
method, the AI could follow a path you lay out on a lane around the track and
complete a race.

You could add more sophistication to this basic model by using parallel lanes
of Waypoints. This would allow the AI to change lanes to avoid other chariots (or
obstructions) on the track. It could detect these either by keeping track of the chariot
or obstruction at each Waypoint in its properties held in its Game Object Record.
And then simply examine this Record to see if another chariot or obstruction was
on that Waypoint. Or you could check the proximity of other chariots to the chariot
controlled by the AI. You could go on and on, adding more data and more data, to
this basic model, which the AI could use; to provide more and more layers of illusion.
There are several Illusion of Intelligence sources19 which describe how you could
build on this model.

This kind of system would be easy to implement within the bounds of an
Event-Database Architecture. A set of visible and invisible Game Objects, in
2D or 3D space, could be used to represent the tracks, the chariots, the obstruc-
tions and the Waypoints. The current Waypoint of each chariot could be held,
with its properties, in the Game Database. The Physics Host could be used
to move the chariots. The Primary Proximity Events could be used to change
to the next Waypoint, when the AI came within close proximity of its current
Waypoint. These Events could also be used to change lanes, when the AI was
in close proximity of another chariot and in danger of crashing into it, or an
obstruction on the track.

50 Event-Database Architecture for Computer Games

1.3.5 A pplication: AI with Neural Networks

There is a field of Computer Science which deals with Artificial Intelligence. In this
academic field, AI is defined as an attempt to model the human brain, or to create
a system that can make deductions. That is to say, given two facts, can a computer
determine whether a third fact is true? This requires a Database, which can hold
these facts, to be designed in such a way as to allow a computer to make these deduc-
tions. But, to date, all attempts at this have failed due to the amount of data required.

However, the quest to achieve this goal has yielded models which could be used to
control an NPC. One of these is Artificial Neural Networks.20 These networks have
been modelled on the cells of the human brain. A real neural network is made up of
a network of brain cells, called Neurons.21 These Neurons combine together to per-
form all the high-level functions associated with the human brain, or so the theory
goes. These include receiving and analysing various sensory information (e.g. sight,
sound and touch) These also include producing human reactions (e.g. memorisation,
rationalisation, speech and the movements of different parts of the body). But how
exactly these Neurons perform these functions is unclear. Since there are about 86
billion Neurons in the human brain.

An Artificial Neural Network is made up of a network of Artificial Neurons.22
This network is made up of several layers, of Artificial Neurons, connected together.
An Artificial Neuron in each layer takes one or more inputs and produces an output
which feeds into the next layer. The first layer takes the NEURAL NETWORK
INITIAL INPUTS. And the final layer produces the NEURAL NETWORK
FINAL OUTPUTS. Both the Initial Inputs and the Final Outputs are numbers,
which represent two interrelated pieces of data.

Thus, take, for example, the race in a circus referred to in the game design of
LPmud, where the player had to take part in a race against other chariots. You could
construct an Artificial Neural Network which took important factors on the tracks, as
the Initial Inputs, and produced the factors affecting a chariot, as the Final outputs.

The Initial Inputs would include

•	 the distance travelled along the track
•	 the distance from the sides of the track
•	 the closest distance of other racing chariots along the track
•	 the relative position of other chariots
•	 the relative position in the race
•	 the speed of the chariot

The Final Outputs would be

•	 the position of the analogue devices which controlled the acceleration of
the chariot

•	 the position of the analogue devices that controlled the deceleration or
brakes of the chariot

•	 the position of the analogue devices that controlled steering of a chariot to
the left or right

51LPmud Software Production Process

•	 the on-off state of the digital devices i.e. buttons which controlled the accel-
eration of the chariot

•	 the on-off state of the buttons that controlled the brakes
•	 the on-off state of the buttons that controlled the steering to the left or right

Each input of an artificial Neuron has a numerical NEURAL NETWORK
NEURON INPUT WEIGHT associated with it, which multiplies it. The Weight indi-
cates how important that input is in affecting the NEURAL NETWORK NEURON
OUTPUT. The Output of every artificial Neuron is controlled by the same math-
ematical function or NEURAL NETWORK ACTIVATION FUNCTION.

When you teach an Artificial Neural Network, you feed it with NEURAL NETWORK
TRAINING DATA. This is a set of known Initial Inputs and known Final Outputs of
the biological Neural Network which the Artificial Neural Network is meant to emulate.
You feed the known Initial Inputs from the Training Data into the Artificial Neural
Network and compare the results with the Final Outputs in the Training Data. The
difference between the results and the Final Outputs is the error. And you use this
error to adjust the Weights of the Artificial Neurons to correct the results. The goal is to
produce an Artificial Neural Network that understands, or at least mimics, the relation-
ship between the Initial Inputs and Final Outputs in the Training Data. So well that
it can predict what the Final Outputs will be whenever the Initial Inputs change. There
are several teaching methods for doing this. The most basic one is an algorithm called
NEURAL NETWORK BACK PROPAGATION or Back Propagation.

1.3.5.1  Application: Back Propagation
Consider the example of a race of chariots around a circus mentioned earlier. In its
simplest form, the Artificial Neural Network, which would be trained to race a char-
iot, with Back Propagation, would made up of three layers. You can see a diagram
showing these layers in Figures 1.17 and 1.18.

The first layer is the Input layer and is made up of three artificial Neurons which
are not Neurons per se, but simply the Initial Inputs for the system. These Initial
Inputs are three values. The first value is just a NEURAL NETWORK BIAS or a
constant value used to add variation to the other values on that layer and offset any
bias in how the Training Data was collected (Figure 1.18).

If the Training Data were collected from observing just one player, then there
will be a bias towards how that player plays. And you need to offset that and add
variation to the Data. That will let the network learn how other players play.

If the Training Data were collected from one race around the track, then there
will be a bias towards that race. And you need to offset that and add variation to
the Data. That will let the network learn how to play in other races, with different
opponents, on different tracks.

By default the Neural Network Bias is 1. The other two Initial Inputs represent
the aggregation of all the inputs to the network. In this case, these values

•	 the distance travelled along the track
•	 the distance from the sides of the track
•	 the closest distance of other racing chariots along the track

52 Event-Database Architecture for Computer Games

FIGURE 1.17  The simplest form of an Artificial Neural Network that can be trained using
Back Propagation.

FIGURE 1.18  Legend of the symbols in Figure 1.17.

53LPmud Software Production Process

are added together and fed into one Initial Input. And these values

•	 the relative position of other chariots
•	 the relative position in the race
•	 the speed of the chariot

would be added together and fed into the other Initial Input.
The second layer is made up of four artificial Neurons. The first one is not a

Neuron per se but another Neural Network Bias to adjust all the other values on
that layer. By default this is 1. The other three artificial Neurons are Neurons and
take three inputs from the three artificial Neurons in the first layer, with a Weight
on each input. By default all of the Weights for all these inputs are 1. The output of
each Neuron depends on the Activation Function.

The third layer is a final Output layer and only has one artificial Neuron,
which has four inputs from the four artificial Neurons in the second layer. Again
there is a Weight on each input. And by default all of the Weights for all these
inputs are 1. Again the output of this artificial Neuron depends on the Activation
Function. And in its simplest form, this is just the sum of each input multiplied
by its Weight.

The Final Output from the third layer marks the end of the first phase of the
algorithm known as NEURAL NETWORK FORWARD PROPAGATION or
Forward Propagation. The second phase is known as Back Propagation. And
in this phase, you work backwards, from the third layer, to the second layer, to
the first layer. And you adjust the Weights of all the inputs at each layer. So
that the difference between the Final Output and the expected output in the
Training Data or loss is reduced. For each input at each layer, you adjust the
Weight attached to that input. Depending on how much that input affected the
loss in the Final Output.

To adjust the Weight at each input, you first have to calculate how much the input
and Weight contributed to the overall loss in the Final Output. Followed by increas-
ing or reducing each Weight depending on whether it has a positive or negative effect
on the overall loss in the Final Output. Working out the contribution of each input
to the overall Final Output is not trivial. It involves a lot of complex mathematics
which are hard to explain. Nevertheless, the end result is these four mathematical
equations:

	 f a a() =

	 . 1 . Delta n W n Delta n f a()() () ()= + ′

	 . J n Z n Delta n() () ()′ =

	 . W W n Alpha J n() ()= − ′

54 Event-Database Architecture for Computer Games

where

f(a) is the Activation Function of every artificial Neuron that generates its
output

a is the sum of the inputs to the artificial Neuron each multiplied by its Weight
Delta(n) is the amount of loss in the output of the artificial Neuron in the cur-

rent layer due to an input
W(n) is the old Weight of that input
Delta(n+1) is the amount of loss in the output of the artificial Neuron in the

next layer that the output of the artificial Neuron in the current layer feeds
into

f’(a) is the partial derivative of the Activation Function which in the simplest
case is 1

J’(n) is the amount that the old Weight has to be adjusted to counteract the loss
in the Final Output

Z(n) is the output of the artificial Neuron in the current layer
W is a new Weight for the input
Alpha is the training rate typically 0.1

With these equations you can adjust the Weights of the inputs at each layer of the
Artificial Neural Network, during the Back Propagation. And train the network.

1.3.5.2  Application: Flaws in Back Propagation
The equations mentioned in the previous subchapter, used to train Artificial Neural
Networks with Back Propagation, also highlight its flaws. The first flaw is the
Activation Function.

In its simplest form this is the sum of each input into an Artificial Neuron multi-
plied by its Weight. This is a linear function e.g.

	 f a a() =

where

a is the sum of each input multiplied by its Weight, and the output of the
function.

That is to say, the output of the function increases proportionally with the input.
And the overall effect of the linear functions at each layer of Artificial Neurons in the
network is itself a linear function. This means that the network assumes that overall
there is a linear relationship between the Initial Inputs and the Final Outputs. And
the Artificial Neural Network will eventually find this relationship, as it is trained.

But if there were no linear relationships between the Initial Inputs and the Final
Outputs, then the Artificial Neural Network will never find this relationship. And it
will never be able to predict the Final Outputs for any given Initial Inputs.

For example, suppose you were training an Artificial Neural Network to race a
chariot around a circus. And there were no linear relationships between the metrics

55LPmud Software Production Process

which are the Initial Inputs (e.g. the distance travelled, the distances from the sides
of the track and the distance from other chariots) and Final Outputs (e.g. the move-
ment of analogue devices or digital devices of a Game Controller) then that network
will never find the relationship if it is only using a linear Activation Function.

Unless that is the Activation Function is a non-linear function. Non-linear
Activation Functions are the more popular form. Since they can deal with non-lin-
ear relationships. When an Artificial Neural Network uses a non-linear function, then
it can find non-linear relationships between the Initial Inputs and Final Outputs.

The second flaws are these non-linear functions. There are several from which
you could choose. Some non-linear functions are better suited to some applications
than others. And the non-linear function you choose can affect how quickly the
network can be trained and find the relationship between the Initial Inputs and the
Final Outputs.

Non-linear functions are more complex, harder to understand and harder to
explain than linear functions. No one can understand or predict the accumulative
effect of non-linear functions in a network, when the number of functions starts to
get too large.

This leads to third flaw. That is the guesswork required for the number of lay-
ers of Artificial Neurons, and the number of Neurons in each layer. There is no
rule for how to set these numbers. On the one hand, the more layers and Artificial
Neurons the network has, the longer it will take to do the Forward Propagation
and Back Propagation through the network. And the longer it will take to train the
network. On the other hand, the more layers and Artificial Neurons the network has,
the greater capacity it has to learn. Or so some people believe. This is premise behind
models of Artificial Neural Networks such as the DEEP LEARNING MODEL and
LANGUAGE LEARNING MODEL.

A Deep Learning Model is an Artificial Neural Network with a large number of
layers and Artificial Neurons. It can be used to recognise objects in images.

One example of this is a network used in dermatology to detect diseases in the
images of the skin.

A Language Learning Model is also an Artificial Neural Network with a
large number of layers and artificial Neurons. It can be used to understand, gener-
ate and interpret natural language or human language. In its Training Data, the
Initial Inputs are sentences or paragraphs with a word missing at the end. And
the Final Outputs are possible words which go on the end of that sentence or
paragraph, and the probabilities of those words. This is used to train the network
to predict the next word in a sentence or paragraph. And this is used to understand
and respond to questions. So long as these can be reframed as a missing word
problem.

For example, the question

What do cats like to sleep in?

can be reframed as a missing word problem in the form

Cats like to sleep in _____

56 Event-Database Architecture for Computer Games

The network then has to find the word with the highest probability of finishing
that sentence.

One example of this network is the one used by the popular Web Server known
as ChatGPT. This has over 170 billion Artificial Neurons in the network, which is
comparable to the average number of biological Neurons in the human brain. And
these can achieve (seemingly) impressive results.

Since the Event-Database Architecture is based on a Relational Database, it
can store large amounts of data. Such as the Training Data required to teach a Deep
Learning Model or a Language Learning Model. And you may be tempted to
create a Deep Learning Model or Language Learning Model with it. To achieve
similarly impressive results. There is a social trend currently to develop more and
more software with Artificial Intelligence in the form of these Models.

Typically, you cannot build these Models with commercial game-engines which
are based on hierarchical databases. There is no standard for hierarchical databases.
Therefore, you cannot interoperate a hierarchical database with other tools apart
from the game-engine which created it. You cannot query or edit large amounts of
Training Data in these databases with other tools. To verify or correct the data.
Apart from using the game editors built with these game-engines. But these game
editors are not scalable and were never meant to query or edit large amounts of data.

On the other hand, there is a standard for Relational Databases. And you can use
any Relational Database Management Systems (RDBMS), to verify or correct large
amounts of data in the Relational Database. An RDBMS is scalable. Therefore, you
can build these Models with the Event-Database Architecture which is based on a
Relational Database.

Nevertheless, the trend towards these Models, and the impressive results you can
achieve with them, comes at a high cost. These leads onto several more flaws of
large Artificial Neural Networks, such as Deep Learning Models and Language
Learning Models, including the following:

1.	 the never-ending cycle of the development of larger and larger Artificial
Neural Networks, with more and more Artificial Neurons, which require
more and more resources in terms of storage media and computer process-
ing power to run

2.	 the never-ending cycle of buying more and more Expensive Graphics
Processors23 each year required to build these large Artificial Neural
Networks, to the point where these are being built with Expensive Graphics
Processors that cost 40000 dollars each

3.	 the never-ending cycle of more and more electricity and power these
Expensive Graphics Processors consume and waste, to the point where one
Language Learning Model, i.e. ChatGPT, takes 1287 megawatt hours of
electricity to train it, which is equivalent to the amount of electricity used
by an average American household for over 700 years.

And yet despite the huge expense spent on these networks, you still get expensive
erroneous Language Learning Models24 from time to time. And with billions of
Artificial Neurons, and non-linear Activation Functions, it is no longer feasible for
anyone to understand or predict what the output of these networks would be. And

57LPmud Software Production Process

there is no hope of diagnosing and correcting the output when things go wrong.
Apart from playing around with the Initial Inputs or the Final Outputs. Or trying
a completely new set of Training Data.

This leads on to the fifth flaw. That is that some Artificial Neural Networks
can be relatively simple and use only one Activation Function for all the
Artificial Neurons. Others can be very complex and use a huge number of dif-
ferent Activation Functions across the network. And there is no rule about how
many Activation Functions you can have and what combination of Activation
Functions you can use.

This leads to the sixth flaw in Artificial Neural Networks. That is the guesswork
required in the selection and distribution of the Activation Functions across the net-
work. Some Activation Functions are suitable if you want the Final Outputs to be
a probability of something occurring i.e. a value between 0.0 and 1.0. One example
of this is one called a Sigmoid Function.

But apart from that it seems anything goes. The form of the Final Outputs of the
network just reflects the form of the Final Outputs in the Training Data. And you
can set whatever arbitrary form you like for the Final Outputs in the Training Data.

For example, suppose you were training an Artificial Neural Network to drive
a chariot around a circus in a race with other chariots. And you decided the Final
Outputs in the Training Data would reflect the state of the digital devices of the
Game Controller that cause the chariot to

1.	accelerate
2.	decelerate
3.	 turn left
4.	 turn right

You can decide that in the Training Data that the Final Outputs should take the
form of a single value between 1 and 4. Depending on which digital device had been
pressed at some point in time during the race, and assuming that only one digital
device could be used at any point in time. This means that form of the Final Outputs
of your Artificial Neural Network will theoretically be one value between 1.0 and 4.0
once it is fully trained.

Or you can decide that the Final Outputs in the Training Data should take the
form of four values which can either be 1 or 0. Depending on whether the four digital
devices had been pressed or not at some point in time, to accelerate, decelerate, turn
left or turn right. This means that the form of the Final Outputs of your Artificial
Neural Network will theoretically be four values between 1.0 and 0.0.

Or you can decide that the Final Outputs in the Training Data should take the
form of two values from two analogue devices or axes, which can be between −1
and 1. On one analogue device or axis, a value of −1 means that the chariot should
decelerate at its maximum rate, and at the opposite end a value of 1 means that
chariot should accelerate at its maximum rate. On the other analogue device or axis,
a value of −1 means the chariot should turn to the left at the maximum rate. And at
the opposite end, a value of 1 means the chariot should turn to the right at its maximum
rate. This means that the form of the Final Outputs of your Artificial Neural Network
will theoretically be two values between −1.0 and 1.0 once it is fully trained.

58 Event-Database Architecture for Computer Games

Thus, the form of the Final Outputs of your Artificial Neural Network is arbi-
trary for two reasons.

Firstly, there is no rule about what form the Final Outputs in the Training Data
and the Final Outputs of the Artificial Neural Network should take. In this example,
it could be one value, two values or four values.

Secondly, there can be outliers in the Final Outputs. Take for example the first
form previously mentioned, where theoretically the Final Output of Artificial Neural
Network could be a single value between 1.0 and 4.0 when fully trained. Practically,
the network may never be fully trained or you will not know how much Training Data
you have to go through to reach that point. And while it is training some Outputs will
be within this range and others, known as outliers, will be just outside of this range.
And the way in which you choose to respond to outliers is arbitrary.

You could choose to ignore outliers, stick with your model and keep training the
network and adjusting its Weights until some arbitrary point in the future where you
are satisfied with the Weights you have. Or you could choose to treat outliers as minor
anomalies and clamp down the values greater than 4.0 and clump up the values less
than 1.0. So that these fall within the expected range. Or you could choose to deal with
outliers by offsetting the Initial Inputs or the Final Output, by adding or subtracting
numbers. Or scale up or down the Initial Inputs or Final Output, by multiplying or
dividing by more numbers. Until the Final Output falls within the expected range.

The seventh flaw is the training rate which affects how quickly the network can
be trained. There are no rules about how you set this rate. But if you set it too low,
then it can take the network a very long time, and several iterations of Forward
Propagation and Back Propagation to complete its training.

The eighth flaw of Artificial Neural Networks, which is closely related, is the
Initial Inputs. If the number of Initial Inputs was too small, then you may either
have to leave out inputs which do affect the output, because there are not enough
places to put it. Or you may have to aggregate two or more input values together into
one value. And feed this into one input. As a result, when you train the network, it
may not find the relationship between Initial Inputs and Final Outputs. Since one
of the inputs, which on its own has a strong affect on the Final Outputs, has been
aggregated with other values which have little or no effect. Apart from adding noise
to the inputs which do have a strong affect.

The ninth flaw of Artificial Neural Networks, which is closely related, is that the
Training Data cannot contain too much noise. Otherwise, it will affect the rate at
which the network can be trained to find a relationship between the Initial Inputs
and the Final Output. And in the worst case, the network may never find the rela-
tionship. To prevent this you have to ensure that the values fed into inputs are statisti-
cally normalised into values between 0 and 1. And that these are evenly distributed,
with a Standard Deviation of 1, and a mean value of 0.

The tenth flaw in Artificial Neural Networks is the Neural Network Bias. This is an
arbitrary constant value generated by an artificial Neuron in one or more layers, to offset
the bias in how the Training Data was collected. It is hard to quantify how much bias
there is in how the Training Data was collected. And therefore, it is hard to quantify
how large the Neural Network Bias should be to counteract the bias in the collection.

If the Neural Network Bias were too small compared with the bias in the collec-
tion of the Training Data, then the Artificial Neural Network will not tolerate large

59LPmud Software Production Process

variations in its Initial Inputs, from the ones in the Training Data. And as soon as
it receives any inputs which were not in the Training Data, its Final Outputs will
become unpredictable.

Conversely, if the Neural Network Bias were too large compared with the bias in the
collection of the Training Data, then the variation this gives the Initial Inputs in the
Training Data may be so large that it takes a long time to train the network. Or it may
be impossible to train the network. Since the Neural Network Bias causes such a large
variation in the Initial Inputs in the Training Data, the network can never produce the
Final Outputs in the Training Data. No matter how the Weights were adjusted.

There are numerous Neural Network sources25 that describe the flaws of Back
Propagation and other teaching methods, and how to overcome these flaws.

1.3.5.3  Application: Back Propagation in the Architecture
All the teaching methods for Artificial Neural Networks require gathering Training
Data from a test. In the case of a game involving racing chariots around a circus, this
test would involve watching the game being played by a human player. It would involve
collecting the important factors on the track that determine the player’s response e.g.

•	 the distance travelled along the track,
•	 the distance from the sides of the track,
•	 the distance of other racing chariots along the track,
•	 the relative position of other chariots.

And it would involve collecting the responses at the same time e.g.

•	 the position of the analogue devices which controlled the acceleration of
the chariot,

•	 the position of the analogue devices that controlled the brakes of the chariot,
•	 the position of the analogue devices that controlled steering of a chariot to

the left or right,
•	 the on-off state of the digital devices i.e. buttons which controlled the accel-

eration of the chariot,
•	 the on-off state of the buttons that controlled the breaks,
•	 the on-off state of the buttons that controlled the steering to the left or right.

These are the Initial Inputs and Final Outputs of Training Data already men-
tioned in the previous subchapter.

Once you have gathered the Training Data, you can construct an Artificial Neural
Network, in the Event-Database Architecture, using Database Tables, Database
Records, Database Fields, Game Objects, Events and Actions. Your Training
Data could be held in a Database Table. The artificial Neurons in each layer could
be represented by Game Objects. The properties of these Game Objects would be
held in Database Records. The Database Fields would include

1.	value of each input into each Neuron
2.	 the Weights of the input values
3.	 the sum of each input multiplied by its Weight

60 Event-Database Architecture for Computer Games

4.	 the output of each Neuron
5.	 the loss in the output of each Neuron
6.	 the training rate

The chain of calculations, for the output of each Neuron, from the first to the last
layer, in the first phase or Forward Propagation, could be done through a chain of
Primary and Secondary Events e.g.

1.	PRIMARY NEURAL NETWORK FORWARD PROPAGATION
nnnn EVENT

2.	NEURAL NETWORK FORWARD PROPAGATION nnnn FETCH
METRICS FROM TRAINING DATA EVENT

3.	NEURAL NETWORK FORWARD PROPAGATION nnnn FETCH
METRICS FROM GAME WORLD EVENT

4.	NEURAL NETWORK FORWARD PROPAGATION INPUTS nnnn
LAYER X NEURON xx EVENT

5.	NEURAL NETWORK FORWARD PROPAGATION INPUTS nnnn
LAYER Zyyyy NEURON xx EVENT

6.	NEURAL NETWORK FORWARD PROPAGATION INPUTS nnnn
LAYER D NEURON xx EVENT

7.	NEURAL NETWORK FORWARD PROPAGATION OUTPUT nnnn
LAYER Zyyyy NEURON xx EVENT

8.	NEURAL NETWORK FORWARD PROPAGATION OUTPUT nnnn
LAYER D NEURON xx EVENT

9.	NEURAL NETWORK FORWARD PROPAGATION TRANSLATE
OUTPUT nnnn EVENT

where

•	 yyyy is the ordinal number (of four hexadecimal digits) of the layer of the
network, from left to right

•	 xx is the ordinal number (of two hexadecimal digits) of the artificial Neuron
in the layer on the network, from top to bottom

•	 nnnn is the ordinal number (of four hexadecimal digits) of the character
using the Artificial Neural Network, depending on whether it was the first,
second, third etc. NPC to appear in the Game World.

•	 D designates a Artificial Neuron in the Output Layer
•	 Z designates a Artificial Neuron in the Hidden Layer
•	 X designates a Artificial Neuron in the Input Layer. See Figure 1.17 and

Figure 1.18.

The Primary Neural Network Forward Propagation nnnn Event would begin
the process of Forward Propagation and the generation of the Final Outputs.

The Neural Network Forward Propagation nnnn Fetch Metrics From Training
Data Event would be a Secondary Event following from that Primary Event. The
Action in response to this Event would get the next metrics from next Record of the

61LPmud Software Production Process

Training Data that should be used to train the network. And it would feed these values
into all the Initial Inputs in the Input layer to train the network. This Action would be
performed by a Game Object that was on its own layer before the Input layer.

The Neural Network Forward Propagation nnnn Fetch Metrics From Game
World Event would be a Secondary Event following from that Primary Event.
The Action in response to this Event would get the next metrics from Game World
that should be used to direct a character in the Game World. And it would feed these
values into all the Initial Inputs in the Input layer of the network. This Action would
be performed by a Game Object that was on its own layer before the Input layer.

The Neural Network Forward Propagation Inputs nnnn Layer X Neuron
xx Event would be a Secondary Event following from that Primary Event. The
Action in response to this Event would generate the output for a Neuron in the Initial
Inputs in the Input Layer or first layer, from either the metrics in the Training Data
or the Game World (e.g. distance along the track and shortest distance to other chari-
ots). That is to say the metrics being used to train the network.

The Neural Network Forward Propagation Inputs nnnn Layer yyyy Neuron xx
Event would be a Secondary Event following from that Primary Event. The Action
in response to this Event would calculate the sum of all the inputs into an artificial
Neuron, with each input multiplied by its Weight, in a hidden layer or second layer,
after the Input layer.

The Neural Network Forward Propagation Inputs nnnn Layer D Neuron xx
Event would be similar. But Action for this Event would only be used to calculate
the sum of all the inputs into an artificial Neuron in the last layer or Output layer.

Likewise, the Neural Network Forward Propagation Output nnnn Layer yyyy
Neuron xx Event would be a Secondary Event following from that Primary Event.
The Action in response to this Event would generate output of the Activation Function
of an artificial Neuron. And pass this onto the inputs of the Neurons in the next layer.

The Neural Network Forward Propagation Output nnnn Layer D Neuron xx
Event would be a similar Secondary Event. But this would only be used to generate
the output of an artificial Neuron in the last layer, which is part of the Final Outputs.

The Neural Network Forward Propagation Translate Output nnnn Event
would be a similar Secondary Event. The Action in response to this Event would
be performed by a Game Object in its own layer after the last layer or Output layer.

It would use the commands i.e.

Forwards Command
Backwards Command
Turn Left Command
Turn Right Command

to direct the chariot in a race. By translating all the Final Outputs into the six stan-
dard Secondary Events i.e.

Secondary Connect Event
Secondary Disconnect Event

62 Event-Database Architecture for Computer Games

Secondary Controller Moved Event
Secondary Controller Stopped Event
Secondary Controller Pressed Event
Secondary Controller Released Event

sent to the Master Player Object to simulate the analogue devices or digital devices
on the Game Controller being used to evoke those commands.

And it would include the following properties of these Secondary Events

1.	 the cause of the Event was the 2D Player Object or 3D Player Object of
the character being controlled by the AI

2.	 the unique word identifying the analogue device or digital device of the
Game Controller that had been connected, disconnected, moved, stopped,
pressed or released to evoke the Forward, Backwards, Turn Left or Turn
Right Command.

3.	 the amount the device had been moved along its when invoking that
command.

And the Master Player Object would, in turn, apply the changes caused by these
Events to the properties of that 2D Player Object or 3D Player Object in the Game
World.

The chain of calculations, to adjust the Weights, from the last layer to the first
layer, in the second phase or Back Propagation, could also be done through a chain
of Primary and Secondary Events e.g.

1.	PRIMARY NEURAL NETWORK BACK PROPAGATION nnnn EVENT
2.	NEURAL NETWORK BACK PROPAGATION OUTPUT LOSSES

nnnn LAYER D NEURON xx EVENT
3.	NEURAL NETWORK BACK PROPAGATION INPUT LOSSES

nnnn LAYER D NEURON xx EVENT
4.	NEURAL NETWORK BACK PROPAGATION ADJUST WEIGHTS

nnnn LAYER D NEURON xx EVENT
5.	NEURAL NETWORK BACK PROPAGATION INPUT LOSSES

nnnn LAYER Zyyyy NEURON xx EVENT
6.	NEURAL NETWORK BACK PROPAGATION ADJUST WEIGHTS

nnnn LAYER Zyyyy NEURON xx EVENT

(Note: To understand what ‘nnnn’, ‘yyyy’, ‘xx’, ‘D’ and ‘Z’ signify please refer to
Figure 1.17 and Figure 1.18, and the Primary and Secondary Events used for Forward
Propagation described earlier). The Primary Neural Network Back Propagation
nnnn Event would begin the process of Back Propagation and the adjustments of
the Weights.

The Neural Network Back Propagation Output Losses nnnn Layer D
Neuron xx Event would be a Secondary Event following from that Primary
Event. The Action in response to this Event would calculate output losses of each
Neuron in the last layer or Output Layer.

63LPmud Software Production Process

The Neural Network Back Propagation Input Losses nnnn Layer D Neuron
xx Event would be a Secondary Event following from that Primary Event. The
Action in response to this Event would calculate the loss of the input into a Neuron
in the last layer or Output Layer that contributed to the overall loss of the Network.

The Neural Network Back Propagation Adjust Weights nnnn Layer D Neuron
xx Event would be a Secondary Event following from that Primary Event. The
Action in response to this would calculate the adjustment needed to be made to the
Weight of each input into an artificial Neuron, in the last layer or Output Layer. To
reduce the overall loss of the Network. And the Action would also make that adjustment.

The Neural Network Back Propagation Input Losses nnnn Layer Zyyyy
Neuron xx Event would be a Secondary Event. The Action in response to that
would only be used to calculate the loss of the inputs of the Neurons in the Hidden
Layers in between the last or Output Layer and the first or Input Layer.

Likewise, the Neural Network Back Propagation Adjust Weights nnnn
Layer Zyyyy Neuron xx Event would be a Secondary Event. The Action in
response to that would only be used to adjust the Weight of each input into an
artificial Neuron in the Hidden Layers between the last and first layer. You can
see a diagram of the Artificial Neural Network created from the Events, Actions
and Game Objects of the Event-Database Architecture during Forward
Propagation, in Figure 1.19 with a Legend in Figure 1.20 and in Table 1.3. And
you can see the same during Backward Propagation in Figure 1.21 with a Legend
in Figure 1.22 and in Table 1.4.

FIGURE 1.19  Network of Game Objects connected by Primary and Secondary Events
which form a network of Artificial Neurons in an Artificial Neural Network, during Forward
Propagation.

64 Event-Database Architecture for Computer Games

(Continued)

FIGURE 1.20  Legend of all the symbols in Figure 1.19. A more detailed explanation of the
Game Objects is available in Table 1.3.

TABLE 1.3
Legend of Game Objects Displayed in Figure 1.19

Game Object Role
Master Neural Network Object Periodically starts the Forward Propagation of all

Artificial Neural Networks, with the Primary Neural
Network Forward Propagation Event.

Training Data Object Fetches the next metrics from the Training Data or the
Game World to be fed into the Input layer of the
Neural Network. When it receives the Secondary
Neural Network Forward Propagation Event.

Xnn Object Artificial Neurons in the first or Input layer of the
network.

Zyyyynn Object Artificial Neurons in the intermediate or Hidden layers
of the network.

Dnn Object Artificial Neuron in the final or Output layer of the
network.

65LPmud Software Production Process

FIGURE 1.21  Network of Game Objects connected by Primary and Secondary Events
which form a network of Artificial Neurons in an Artificial Neural Network, during Back
Propagation.

Translate Output Object Translates the final output of the Neural Network into
one of 6 possible Events which simulate a Game
Controller being used to control a player’s character.

Master Player Object Forwards the simulated Events of a Game Controller to
the Player Object being controlled by the Neural
Network. Modifies the properties of the Player Object
based on these Events.

Player Object Receives the simulated Events of Game Controller and
new properties, which affect the player’s character
position, appearance, movement and animation.

It is a list of the Game Objects that form the Artificial Neural Network and other connected Game
Objects.

TABLE 1.3 (Continued)
Legend of Game Objects Displayed in Figure 1.19

Game Object Role

66 Event-Database Architecture for Computer Games

FIGURE 1.22  Legend of all the symbols in Figure 1.21. A more detailed explanation of the
Game Objects is available in Table 1.4.

TABLE 1.4
Legend of Game Objects Displayed in Figure 1.21

Game Object Role
Master Neural Network
Object

Periodically starts the Back Propagation of all Artificial Neural Networks,
with the Primary Neural Network Back Propagation Event.

Xnn Object Artificial Neurons in the first or Input layer of the network. Receives two
Secondary Events. The first Event causes it to calculate how much this
Artificial Neuron contributes to the overall loss due to the input it fed
into the next layer. The second Event causes it to adjust the Weight of
the input this Artificial Neuron will feed into the next layer.

Zyyyynn Object Artificial Neurons in the intermediate or Hidden layers of the network.
Receives two Secondary Events. The first Event causes it to calculate
how much this Artificial Neuron contributes to the overall loss due to the
input it fed into the next layer. The second Event causes it to adjust the
Weight of the input this Artificial Neuron will feed into the next layer.

Dnn Object Artificial Neuron in the final or Output layer of the network. Calculates
the overall loss in the output. When it receives the Secondary Neural
Network Back Propagation Event.

It is a list of the Game Objects that form the Artificial Neural Network and other connected Game Objects.

67LPmud Software Production Process

1.3.6 A pplication: Physics

Now in the Computer Games industry, in theory, the simulation of physics could
be used to imagine a new set of laws which govern the behaviour of materials in an
imaginary universe. And a very small number of games do just that. But, in practice,
in the vast majority of games, it is used to animate characters or creatures and produce
photorealistic images of this universe, but in a Game World. In the Event-Database
Architecture, you can do either. You can either create a new set of laws or stick with
what we have in this universe. This depends on how you build the Physics Host.

Firstly, you would have to decide the kind of data this would require. If you
decided to stick with the laws in this universe, then each 2D and 3D Game Object
would require data that represented its mass, position, speed, acceleration, angular
position, angular speed and angular acceleration in the Game World.

It would require a Collision Mesh or 2D shape or 3D model that would be used
to detect its collision with other Objects. And it would require a Proximity Mesh or
2D shape or 3D model that would be used to detect when it was in close proximity
to another Object.

It would require a Secondary Collision Event that would be triggered and sent to
the Event Host, when another Object collided with this Object. So that this Object
could respond to that collision.

It would require a Secondary Proximity Event that would be triggered and sent
to the Event Host, when another Object was in close proximity to this Object. So
that this Object could respond to the close proximity of the other Object.

It would require a list of 2D Objects whose physics or animations due to their
physics should be updated. This would include Invisible 2D Point Objects, Text
Objects, 2D Image Objects, 2D Animation Objects and 2D Player Objects.

It would require a list of 3D Objects whose physics or animations due to their
physics should be updated. This would include Invisible 3D Point Objects, 3D
Image Objects, 3D Animation Objects and 3D Player Objects.

There is a summary of the Database Tables that would be required in the Game
Database in Figure 1.23.

FIGURE 1.23  Database Tables required for simulating physics.

68 Event-Database Architecture for Computer Games

You will find the examples of the Database Records and Database Fields in each
Table in the LPmud data design.

Now, by default, the Physics Host only uses Newtonian Physics to model the
physics of the Game World. In this model, every Game Object is treated as one
entity, with one mass, one position, speed or acceleration. And any force applied to
it is applied to all parts of the body that make up that Game Object. For example, if
a human character has a force applied to it, then the resultant acceleration is applied
equally to every part of that body, arms, legs, head or torso.

But there are other models of physics you could use as well which provide more
detail in the motion of the body, such as INVERSE KINEMATIC PHYSICS or
RAGDOLL PHYSICS. These models of physics are examples of the influence of
photorealism in the simulation of physics in Computer Games. These are used to
produce photo realistic animations of characters and creatures. When these charac-
ters or creatures are hit by a projectile, move or die.

In these models each body is made up of a skeleton of bones connected at joints.
With constraints about the arc of movement of the bones at each joint, and the linear
movement of the bones at each joint. In both cases, you have to pass through a hierar-
chy of bones in a skeleton. And either make a calculation of the angles of movement
at each joint or the forces at each joint.

1.3.6.1  Application: Inverse Kinematic Physics
Inverse Kinematic Physics originated in the study of robotics. Basically, this
involves passing through the hierarchy of bones of a robotic arm and calculating the
angles of the bones at each joint. To get the end of that arm to reach a certain point
in space.

You can use this to animate the skeletons of characters or creatures. To ani-
mate their feet when they walk or run. To calculate the angles at each joint of
the leg required to reach the next step in the Game World. Or to animate the
hands of a character when that character picks up or holds an item. To calculate
the angles at each joint of the skeleton of the arms, for the hands to pick up or
hold the item.

In the Event-Database Architecture, each bone could be represented by a Game
Object. And each pass through the hierarchy could be conducted by a chain of
Primary and Secondary Events connecting those Objects e.g.

1.	PRIMARY PHYSICS INVERSE KINEMATICS nnnn EVENT
2.	PHYSICS INVERSE KINEMATICS nnnn BONE yy xx ANGLE

ARM TO REACH TARGET EVENT
3.	PHYSICS INVERSE KINEMATICS nnnn BONE yy xx ANGLE LEG

TO REACH TARGET EVENT

where

•	 yy is the ordinal number (of two hexadecimal digits) of first joint in the
chain of links, or hierarchy of bones of a skeleton, numbered from left to
right, top to bottom, that link or bone connects

69LPmud Software Production Process

•	 xx is the ordinal number (of two hexadecimal digits) of the second joint that
links or bone connects

•	 nnnn is the ordinal number (of four hexadecimal digits) of the character
using the Inverse Kinematics, depending on whether it was the first, sec-
ond, third etc. character to appear in the Game World.

The Primary Physics Inverse Kinematics nnnn Event would begin the process
of generating the angles required at each joint in order to get a leg or an arm, of a
character to reach a point in space.

The Physics Inverse Kinematics nn Bone yy xx Angle Arm To Reach Target
Event would be a Secondary Event following from that Primary Event. That
would generate the angle at a joint of an arm. For that arm to reach a point in space.

Likewise, the Physics Inverse Kinematics nn Bone yy xx Angle Leg To Reach
Target Event would be a Secondary Event following from that Primary Event.
That would generate the angle at a joint of a leg. For that leg to reach a point in
space. There is a diagram showing the numbering of the joints of the skeleton, that
in turn controls the numbering of each bone connecting two joints, that in turn con-
trols the naming of the Events which the Game Objects of the bones respond to in
Figure 1.24.

1.3.6.2  Application: Ragdoll Physics
Ragdoll Physics originated in an attempt to produce non-repetitive photo realis-
tic animations of the death of human characters. But it can also be used to simu-
late the reaction of the body to being hit by the external force of some missile or a
weapon. Ragdoll Physics was based on Featherstone’s Algorithm for Rigid Bodies
and involved three basic steps.

In the first step, you have to pass down, from the top to bottom in the hierarchy
of bones, calculating the linear or rotational forces (i.e. torque) acting on each bone.
And calculating the restorative force required on the next bone down the hierar-
chy, in order to keep it connected at the common joint linking the two bones. And
within whatever constraints have been imposed on the linear or rotational movement
around that joint. You then repeat this for the next bone down the hierarchy. Until
you reach the bottom.

In the second step, you have to pass up, from the bottom of the hierarchy to the
top, calculating the linear or rotational forces acting on each bone. And calculating
the restorative forces required on the next bone up the hierarchy. In order to keep
it connected at the common joint linking the two bones. And within whatever con-
straints have been imposed on the linear and rotational movement at each joint. Until
you reach the top.

In this step, you resolve all of the forces calculated for each bone, in the first and
second passes. And apply it to the bone.

Another simpler example, rather than a hierarchy of bones of a human skeleton,
is a chain of metal links.

In this example, in the first step, you pass through from one end of the chain to
the opposite end. And on each link in the chain you detect what forces are acting on
that link. And you calculate the force required on the next link in the chain required

70 Event-Database Architecture for Computer Games

to maintain the connection between both links at their common joint. Given the
constraints or rules limiting the linear movement away from that joint, or the radial
movement around the axis through that joint.

In the second step, you do the same thing again, but starting from the opposite
end, and going back to the end you started from, in the first pass.

After the first pass you will have calculated one set of forces acting on each link
of the chain. And after the second pass you will have calculated another set of forces
acting along each link of chain. So in the third pass you resolve the forces at each
link and apply it to the link causing it to move.

FIGURE 1.24  Numbering of the joints of a horizontal or vertical chain of link. Numbering
of the joints of the bones of a human skeleton.

71LPmud Software Production Process

In the Event-Database Architecture, each link in the chain could be represented
by a Game Object. And each pass through the chain could be conducted by a chain
of Primary and Secondary Events connecting those Objects e.g.

1.	PRIMARY PHYSICS RAGDOLL nnnn EVENT
2.	PHYSICS RAGDOLL nnnn BONE yy xx FIRST PASS DETECT

FORCES ON BONE EVENT
3.	PHYSICS RAGDOLL nnnn BONE yy xx FIRST PASS GENERATE

FORCES ON BONE EVENT
4.	PHYSICS RAGDOLL nnnn BONE yy xx SECOND PASS DETECT

FORCES ON BONE EVENT
5.	PHYSICS RAGDOLL nnnn BONE yy xx SECOND PASS GENERATE

FORCES ON BONE EVENT
6.	PHYSICS RAGDOLL nnnn BONE yy xx THIRD PASS RESOLVE

FORCES ON BONE EVENT

where

•	 yy is the ordinal number (of two hexadecimal digits) of first joint, in each
pair of adjacent joints, in the chain of links, or hierarchy of bones of a skel-
eton, numbered from left to right, top to bottom, that link or bone connects

•	 xx is the ordinal number (of two hexadecimal digits) of the second joint, in
each pair of adjacent joints, that link or bone connects

•	 nnnn is the ordinal number (of four hexadecimal digits) of the character
using the Ragdoll Physics, depending on whether it was the first, second,
third etc. character to appear in the Game World.

The Primary Physics Ragdoll nnnn Event would begin the process of generat-
ing the forces on a chain or character.

The Physics Ragdoll nnnn Bone yy xx First Pass Detect Forces On Bone
Event would be a Secondary Event following from that Primary Event, which
would detect the forces acting on each link or bone, in the first pass.

Likewise, the Physics Ragdoll nnnn Bone yy xx First Pass Generate Forces
On Bone Event would be a Secondary Event following from that Primary Event.
That would detect the forces acting on the next link in the chain, or the next bone in
the skeleton, in the first pass.

Likewise, the Physics Ragdoll nnnn Bone yy xx Second Pass Detect Forces
On Bone Event would be a Secondary Event following from that Primary Event.
That would detect the forces acting on each link, or each bone, in the second pass.

Likewise, the Physics Ragdoll nnnn Bone yy xx Second Pass Generate Forces
On Bone Event would be a Secondary Event following from that Primary Event.
That would generate the forces acting on the next link, or the next bone, in the sec-
ond pass.

Likewise, the Physics Ragdoll nnnn Bone yy xx Third Pass Resolve Forces On
Bone Event would be a Secondary Event following from that Primary Event. That
would resolve the forces acting on each link or bone.

72 Event-Database Architecture for Computer Games

1.3.6.3  Application: Vortex Physics
On the other hand, if you wanted a completely new set of physical laws for a new uni-
verse, then a model of physics you could use to build a game is VORTEX PHYSICS.
In this model the Game World is made out of a fluid, with one or more vortices.
Running through the centre of each vortex is an axis, and all the Game Objects
near this axis rotate around it in the same direction, clockwise or anti-clockwise.
The closer the Object is to the axis, the faster it rotates around the axis. And it either
rotates in a spiral towards the centre of the vortex, if it is a cyclone vortex, or away
from the centre, if it is an anticyclone vortex.

So each Object has an angular position, speed and acceleration around its cen-
tre of mass. And it has an angular position, speed and acceleration around the axis
of the vortex. And it has an orthogonal position or radial distance from the axis.
And it has a position along the axis. The forces affecting it are either orthogo-
nal forces pushing it closer or away from the axis. Or parallel forces pushing
along the axis. Or angular forces or torque, pushing it clockwise or anti-clockwise
around the axis.

The Physics Object Records would have the following Database Fields:

1.	a Primary Key
2.	a Game Object Code Field
3.	a mass
4.	 the number of a cell of the Game World or a vortex in that cell
5.	X Angular Position around its centre of mass
6.	Y Angular Position
7.	Z Angular Position
8.	X Angular Speed
9.	Y Angular Speed

10.	Z Angular Speed
11.	X Angular Acceleration
12.	Y Angular Acceleration
13.	Z Angular Acceleration
14.	Parallel Position along the axis of the vortex
15.	Parallel Speed along the axis
16.	Parallel Acceleration along the axis
17.	Orthogonal Position from the axis of the vortex
18.	Orthogonal Speed from the axis
19.	Orthogonal Acceleration from the axis
20.	Angular Position around the axis of the vortex
21.	Angular Speed around the axis
22.	Angular Acceleration around the axis
23.	Primary Key of a Graphics Object Record of the boundary around the

Object used to test when a Collision Event had occurred
24.	Primary Key of a Graphics Object Record of the boundary around the

Object used to test when a Proximity Event had occurred
25.	Secondary Collision Event which the Game Object should receive
26.	Secondary Proximity Events which the Game Object should receive

73LPmud Software Production Process

In this model, the space is non-linear and non-Euclidean. The position of each
Game Object maps onto the shape of its local vortex, which is not a flat Euclidean
space. Instead, it is a curved funnel around the axis through the centre of that vortex.
The shortest path between two points is not a straight line but a curve.

In the Event-Database Architecture, in this model the Game World would be
broken up into a grid of cells. And each cell would contain one vortex. And there
would be no space of the Game World not covered by this grid.

So, for example, if the Game World were broken up into a 3 × 3 × 3 grid of cells.
That would mean there would be 27 cells and 27 vortices covering the Game World.

Now there are three classes of Game Objects in the Game World.
The first class is the set of Invisible 3D Point Objects that represent each vortex

or cell. The other two classes are all orientated around one of these Objects.
The second class is the set of Invisible 3D Point Objects or invisible particles

which swirl around the central axis of each vortex, in a cyclonic or anticyclonic spi-
ral formation. Each particle would be generated at short random intervals, at random
points along the outermost ring, in the cyclone vortex or the innermost ring of an
anticyclone vortex. Each would have a spherical Collision Mesh around it used to
collide with other Game Objects. Each would have a small initial angular speed and
acceleration around the central axis of the vortex. But as it travelled further down the
spiral format, it would increase its acceleration. And whenever it hit another Game
Object, all of its momentum will be transferred to that Object. Thus, any visible
Game Object that is hit by these invisible particles will gain all of its momentum.
And the particle will disappear from the Game World. Likewise, when the particle
reaches the edge of the cell of the vortex, it will disappear. But the vortex will keep
generating these invisible particles continuously. So as soon as one disappears from
the cell, another will reappear.

The third class is the set of visible Game Objects in each cell. These will collide with
the invisible particles swirling around the vortex of each cell. And each will be slowly
forced inwards, if the vortex is a cyclone, or outwards, if the vortex is an anticyclone.

This physical model would require the following Events:

1.	PRIMARY PHYSICS VORTEX nnnn SPAWN EVENT
2.	PHYSICS VORTEX nnnn PARTICLE yyyy SPAWN EVENT
3.	PRIMARY PHYSICS VORTEX nnnn ACCELERATION EVENT
4.	PHYSICS VORTEX nnnn PARTICLE yyyy ANGULAR

ACCELERATION EVENT
5.	PHYSICS VORTEX nnnn PARTICLE yyyy COLLISION EVENT

where

•	 nnnn is the ordinal number (of four hexadecimal digits) of the vortex using
the Vortex Physics, depending on whether it was the first, second, third etc.
vortex to appear in the Game World

•	 yyyy is the ordinal number (of four hexadecimal digits) of a particle,
depending on whether it was the first, second, third etc. that was about to be
generated in the Game World by a vortex.

74 Event-Database Architecture for Computer Games

The Primary Vortex nnnn Spawn Event would begin the process of generating
new invisible particles that will swirl around the vortex.

The Physics Vortex nnnn Particle yyyy Spawn Particle Event would be the
Secondary Event that follows on from that Primary Event. That would generate
that particle.

Likewise, the Primary Physics Vortex nnnn Acceleration Event would periodi-
cally change the angular acceleration of particles swirling around the vortex. And
it would change the orthogonal accelerations towards the axis. And it would change
the parallel accelerations along the axis.

And the Physics Vortex nnnn Particle yyyy Angular Acceleration Event
would be the Secondary Event following on from that Primary Event. That would
increase the angular acceleration of each particle around the axis of each vortex,
its orthogonal acceleration towards the axis and its parallel acceleration along the
axis if it were a cyclone vortex. Or it would decrease its angular acceleration of each
particle around the axis of the vortex, decrease its orthogonal acceleration away
from the vortex and decrease its parallel acceleration along the axis, if it were an
anticyclone vortex.

And the Physics Vortex nnnn Particle yyyy Collision Event would be the
Secondary Event following on from the Primary Collision Event. That would
cause the particle to disappear from the Game World after a collision with a visible
Game Object or with the edge of the cell of a vortex.

This physical model could be used in the game LPmud to represent areas which
the players could fly through on a magic carpet or on the back of a dragon, like the
clouds over a mountain. Or areas the player could swim through like the lakes in the
valleys of the mountain.

There are many other areas which the Game Designers and other staff could
imagine. And many other non-linear, non-Euclidean physical models they could use
in these areas.

They do not have to create a realistic, linear, Euclidean model every time. They
do not have to create a Game World populated by human characters or animals every
time which require Inverse Kinematic Physics or Ragdoll Physics. They could cre-
ate Game Worlds populated by more ethereal characters like smoke, fire or clouds.
They do not have to create a Game World where some items are static and others are
dynamic. But instead a space where everything is dynamic.

1.3.6.4  Application: Flaws of Physics Models and Scalability
In Inverse Kinematic Physics, there are some cases where the mathematical formu-
las that calculate the angles that the bones of an arm or leg have to make at each joint,
for the end of that arm or leg to reach a point in space, may either not be solvable.
Because that arm or leg is simply not long enough to reach that point in space. Or
there may be multiple solutions. In which case you get strange results where during
the animations of the bones of that arm or leg trying to reach a point, the bones and
joints flip suddenly from one solution to another. And make it appear that the arm or
leg has suddenly snapped.

In Ragdoll Physics, in the example of the metal chain, in theory, the number of
times you have to pass up or down that chain making calculations could be infinite.

75LPmud Software Production Process

If, when you resolve the forces acting on the link at one end of the chain, the result
is not zero, then that force will propagate back down the chain again. And you have
to do another pass through the chain calculating the forces acting on each link. And
if, when you reach the opposite end and resolve the forces at that end, and the result
is not zero, then that force too will propagate back down the chain again. And so on
and so on.

Therefore, in theory this wave of energy could travel up and down the chain for-
ever. But in practice, the Featherstone Algorithm used for Ragdoll Physics only goes
up and down the chain once. And a lot of energy is suddenly lost from the system,
after the second pass, which is not realistic.

Another flaw in Ragdoll Physics is that often a Collision Mesh has to be set for
each bone of the skeleton of a body. To have greater accuracy detecting the colli-
sion of each bone with the environment, and the forces acting on each bone. This
makes the process of setting up the body of a character in the game more complex,
compared with without using Ragdoll Physics. And it makes the process of calculat-
ing the effect of the collision of the body, with its environment, more complex and
requires more computing resources. Furthermore, if these multiple Collision Meshes
were not set up correctly, then it can cause many chaotic results.

For example, suppose you have a character who can row a boat while sitting down,
across a lake in the valley of the mountains. So you decide to only put a Collision
Mesh around the centre of mass of the character i.e. its pelvis. That the character sits
on to row the boat. And you disable or neglect to add the Collision Meshes around
the bones of the arms and legs of a human body. When that body falls into the water,
it will end up rolling around indefinitely, around its centre of mass. And the arms and
legs of the body will lash out at random in the air. Because there will be no account
of the forces of pressure in the water, acting along all the different parts of the body
equally, pushing them upwards. Instead, this distributed force will be reduced to a
single force acting on the centre of mass, i.e. its pelvis, pushing that part of the body
upwards. And pivoting the rest of the body around its centre.

As already mentioned, Ragdoll Physics require more calculations than Newtonian
Physics and can take up more computing resources as a result. Likewise for Inverse
Kinematics Physics more calculations are required compared with just relying on
the Game Artists creating animations of the movement of characters that fit into the
Game World. Likewise, Vortex Physics can become very complex. Especially when
you consider the interaction between two or more vortices acting in close proximity
in the same cell in the Game World. And if you have too many characters, too many
Game Objects using these physics models at once, then they can literally cause your
system to run out of resources and have a critical error or Crash.

Nevertheless, the Event-Database Architecture allows you to scale up if you
require more resources for your model of the physics of the Game World. You can
have more than one instance of the Physics Host. So you can have multiple instances
of the Physics Host performing the calculations and updating the physical properties
of Game Objects in parallel. This allows you to scale up the updating of the Game
Objects and reduce the time it takes to update these Objects. By running more and
more Physics Hosts simultaneously on more and more Threads, Processors or com-
puters in a local computer network.

76 Event-Database Architecture for Computer Games

So long as you ensure that one Physics Host only updates one subset of the
Objects in the Game World. And that Physics Host does not try to update the
Objects in another subset owned by another Physics Host. And that all the dynamic
Objects in Game World are owned by at least one Physics Host. And that each
Physics Host can read and write the properties of the set of Objects it owns in the
central Game Database, through the Database Host. And this can be done whether
the Database Host is on the same local computer or on a remote computer in the
computer network.

If you can ensure all this, then there should be no conflicts and you can mas-
sively improve the performance of this game. At the cost of the resources required to
purchase more Threads, Processors or computers in a local computer network. And
if you purchase more computers to host the Physics Host, on a computer network,
then you will have to expend more money to purchase the bandwidth or greater
throughput required between the computers on the network. Since the traffic across
that network will increase.

Another aspect of the Event-Database Architecture that can be leveraged to
greatly improve performance of a game, across computer network, is the Relational
Database Management System (RDBMS) that is chosen to host the central Game
Database. Many of these systems come in a Multi-User Distributed Form. That
is to say, the Game Database is not hosted on one computer but distributed across
many computers, on a computer network. But when you access the Database on any
computer on that network, the RDBMS acts as if the Database was hosted on that
one computer.

Therefore, if you select an RDBMS that supports Distributed Systems, you
can massively improve the performance of this game. By getting the Database
Administrator to configure this System. So that the Database Records of the
Objects which each Physics Host owns are as close to it as possible on the local
computer network. And the Record can be read from or written to very quickly
as a result.

1.3.6.5  Application: Line of Sight Physics
Apart from aiding animation, through such physical models as Inverse Kinematic
Physics and Ragdoll Physics, another major use of physical models in Computer
Games industry is to aid Artificial Intelligence. Specifically, it is for helping NPCs
respond to things in their line of sight. Typically with a commercial game-engine,
you can fire an invisible ray from one point in the Game World to another. And you
will get back a list of all the Objects that were encountered along that straight line.
And an Artificial Intelligence can use this for example to aim missiles at a target in
its line of sight. Or to react to something it sees in its line of sight. Like, for example,
pedestrians walking along a side of a paved road through a town or village can use
this to dodge out of the way of any player-controlled horses or carriages. That veer
off the road and start riding through the pedestrians.

Now in the Event-Database Architecture, there is no explicit ability to draw
straight lines in the Game World, between two points. And to see what Game
Objects would be hit along that line. But you can implicitly create a thin Cylindrical
Mesh which can act like a straight line. And make this Mesh a boundary around an

77LPmud Software Production Process

Invisible 2D Point Object or Invisible 3D Point Object in the Game World, for
Proximity Events. And you can transform, rotate and scale this thin line between
any two points in the Game World, by transforming, rotating or scaling the Game
Object that line was attached to. And once you place this Game Object on the 2D
Physics List or 3D Physics List, the Physics Host will send a Secondary Event
from every Game Object that line intersects. To the Invisible 2D Point Object or
Invisible 3D Point Object. And you can use this to cause an Artificial Intelligence
to react to Objects in its line of sight.

The main difference between this approach and the approach used by com-
mercial game-engines is that in the latter case, you can fire as many of these rays
in a Unit of game time as you want. And you will get a response immediately
in that same Unit. But in the Event-Database Architecture you will not get a
response in the current Unit of game time, but the next Unit. Furthermore, the
Physics Host will automatically stop updating the physical properties in the cur-
rent Unit of game time. And defer the updating to the next Unit, if updating the
properties takes more time than the Unit of game time. So the Event-Database
Architecture automatically mitigates the case where you can have too many of
these rays being fired off at once, consuming too many resources. See the chapter
entitled

Events Host, Physics Host and Recursion Errors

in the volume

Event-Database Architecture for Computer Games: Volume 1, Software
Architecture and the Software Production Process.

1.3.7 A pplication: Graphics

Rendering graphics in the Game World with the Event-Database Architecture
would begin by placing Graphic Objects on the 2D Graphics List and 3D
Graphics List.

There is an example of the Database Tables of Graphic Objects that could be
placed on the 2D Graphics List and 3D Graphics List in Figure 1.25.

Apart from the Database Tables of the Graphic Objects, 2D Graphics List and
3D Graphics List, the Graphics Host would require Database Tables with infor-
mation that could be used to perform Software Rendering and Hardware Rendering.
In a process that would run during each Unit of game time.

Basically, the steps of the process are the following:

In the first step, the bounding boxes around the 2D Graphic Objects and 3D
Graphic Objects in the 2D Graphics List and 3D Graphics Lists are
collected.

In the second step, the active 2D Camera Objects and 3D Camera Objects
that would be used to project these onto the screen are collected from 2D
Camera List and 3D Camera List.

78 Event-Database Architecture for Computer Games

In the third step, the collection of bounding boxes are projected through
the collection of Camera Objects into the screen space, using Software
Rendering.

In the fourth step, the projections are put into the Projected Shapes Database
Table.

In the fifth step, a criterion is used to select the projections from
Projected Shapes. And the selection is put in the Projected List
Database Table.

This criteria would typically be whether the bounding boxes of the Graphic
Objects fitted completely or partially within the area of visibility or viewing frustum
in front of the Camera Objects.

After that Hardware Rendering would be used to render the Graphic Objects,
which had been selected on the Projected List, on the screen.

There is a summary of the Database Tables that would be required in
Figure 1.26.

More Database Tables would be required with the 2D polygons, 3D models,
Textures, Texture coordinates or UVs and Materials to perform Hardware Rendering
of Graphic Objects.

FIGURE 1.25  Examples of Database Tables of Game Objects that would be put on the 2D
Graphics List and 3D Graphics List for the Graphics Host to render.

79LPmud Software Production Process

There is a summary of the Database Tables that would be required in
Figure 1.27.

More Database Tables would be required to perform Hardware Rendering of
Text Objects.

There is a summary of the Database Tables that would be required in Figure 1.28.
More Database Tables would be required to animate the vertices and images of

2D polygons, 3D models or skeletons of 3D models.
There is a summary of the Database Tables that would be required in Figure 1.29.
You will find the examples of the Database Tables, Database Records and

Database Fields used by the Graphics Host in the LPmud data design.

1.3.7.1  Application: Flaws of Graphical Models and Scalability
As has already been mentioned, the Graphics Host, in the Event-Database
Architecture, renders graphics in a process that combines Software Rendering
with a Central Processor and Hardware Rendering with a Graphics Processor. The

FIGURE 1.26  The Database Tables required by the Graphics Host to execute the prelimi-
nary steps of the process of Software Rendering which selects the items for the process of
Hardware Rendering.

80 Event-Database Architecture for Computer Games

FIGURE 1.27  The Database Tables required by Graphics Host to perform Hardware
Rendering.

FIGURE 1.28  The Database Tables required by the Graphics Host for rendering Text
Objects with Hardware Rendering.

81LPmud Software Production Process

formative steps are performed with a Central Processor. And the latter steps are per-
formed with a Graphics Processor.

You can see a general description of the former steps in Figure 1.26. But a general
description of the latter steps is not included in the standard description of the Event-
Database Architecture because these are too low level for a high-level software
architecture. These involve low-level machine code, or Graphic Shaders, used to
programme the Graphics Processor.

Nevertheless, it is worthwhile identifying the number of steps involved in
this process. Just for the sake of comparison with other software architec-
tures. In the Event-Database Architecture, the steps for Hardware Rendering
with a Graphics Processor would typically be the same as the steps used by
standard software libraries such as OpenGL. In these software libraries, these
steps are categorised by the following the Graphic Shaders used to programme
them:

1.	Vertex Shader
2.	Tessellation
3.	Geometry Shader
4.	Rasterisation
5.	Fragment Shader.

After the ‘Fragment Shader’ is used, the graphics would normally be rendered on
the screen or a Texture.

FIGURE 1.29  The Database Tables required by the Graphics Host for rendering 2D
Animation Objects and 3D Animation Objects.

82 Event-Database Architecture for Computer Games

Now what exactly each of these Graphic Shaders does at each step is not impor-
tant at this point. If you are interested, then see the subchapter entitled

Materials Table

What matters at this point is that you can use these Graphic Shaders to identify
the number of steps involved in Hardware Rendering. And this number is around
5 steps. From the diagram Fig 1.26, the steps involved in Software Rendering with
the Graphics Host are 5. This gives you an overall total of 10 steps for Software
Rendering and Hardware Rendering.

Now compare this with existing commercial game-engines with software archi-
tectures which adopt a similar approach. That similarly combines a number of steps
of Software Rendering with a Central Processor and a number of steps of Hardware
Rendering with a Graphics Processor.

Typically, the total number of steps used by the commercial game-engines are
much longer and more complex. These can be up to 20 ‘passes’ or cycles through the
steps of Software Rendering or Hardware Rendering. Each ‘pass’, except the final
‘pass’, produces partial results which are fed into the next ‘pass’. Each ‘pass’ is not
a single step but multiple steps, using the five basic steps of Hardware Rendering to
varying degrees. That means overall in 20 ‘passes’ you could have up to 100 steps.

There is a diagram showing the time taken by some of these 20 ‘passes’ for a
commercial game-engine, during each Unit of game time or Frame in Figure 1.30.

Advocates of these commercial game-engines would claim that the longer pro-
cesses i.e. the greater number of steps involved in Software Rendering and Hardware
Rendering of these software architectures, compared with the Event-Database
Architecture, were necessary to achieve Photorealism.

It was necessary to be able to render photorealistic scenes in Game World in
‘real-time’. By which they mean at a rate of around 60 Frames per second. And it
was necessary to show photorealistic graphical effects in these scenes. Such effects
would include effects of

•	 lighting,
•	 shadows,
•	 reflections off shiny surfaces,
•	 roughness on metallic surfaces,
•	 fog,
•	 smoke,
•	 clouds and so on.

This would also include animated surfaces or particles, such as

•	 waves rippling across liquid surfaces,
•	 tongues of fire flying out of a torch,
•	 splashes of water from crashing waves,
•	 sparks flying off a metallic surface after a bullet ricochets off its surface or
•	 long grass swaying in a breeze.

83LPmud Software Production Process

But there are several rudimentary flaws in the software architecture of commer-
cial game-engines with respect to this claim. That come out when you compare the
Software Rendering and Hardware Rendering processes of these commercial game-
engines, with the Software Rendering and Hardware Rendering processes of the
Event-Database Architecture. These are with respect to

1.	Flaws of Photorealism in Game Worlds
2.	Reusability of the intermediate data generated
3.	Obscurity of the sub-processes
4.	Obscuring of graphics with physics
5.	Scalability of the processes
6.	Limitations of power vs limitations of imagination.

FIGURE 1.30  The measurements of the times taken to execute 20 ‘passes’ through the
process of Hardware Rendering with the Graphics Processor, during one Unit of game time
or Frame, reported by the Profile GPU Unreal Console Command, for a game being built
with the Unreal Engine.

84 Event-Database Architecture for Computer Games

1.3.7.2  Application: Flaws of Photorealism in Game Worlds
The first rudimentary flaw to the claim that the longer and more complex Software
Rendering and Hardware Rendering processes of commercial game-engines are
necessary for Photorealism is the flaws of Photorealism in Game Worlds.

Indeed the software architectures of commercial game-engines with 20 ‘passes’
through the steps of the Hardware Rendering process may very well be superior to
ones with just 1 ‘pass’, such as the Event-Database Architecture. At least, when it
comes to producing photorealistic scenes in computer games.

But do you need to achieve Photorealism? Are computer games nothing more than
interactive movies? Do you need a process which takes 20 ‘passes’, through the steps
of Hardware Rendering process of the Graphics Processor, to achieve Photorealism?
Is a process which takes 20 ‘passes’ superior to one which takes less ‘passes’, or one
which just takes 1 ‘pass’?

Despite the long complex processes the Software Developers employ, the
results achieved by their commercial game-engines are still flawed. And they fail
to achieve Photorealism. All they do is give a temporary illusion of Photorealism.
Once you start to recognise the flaws of Photorealism,26 you cannot stop seeing
these every time.

A scene that is lit so bright that it looks like it is taking place on the twilight zone
on Mercury next to the sun, a reflective surface which does not reflect everything
moving in front of it, the fog in an atmosphere which seems to have no moisture, the
sparks of fire emanating from a torch which just look like blocks of 2D sprites flash-
ing across the screen, all quickly and permanently break the illusion of Photorealism,
once you notice them.

And there are many more flaws in Photorealism used by commercial game-
engine. These include the following:

1.	 the never-ending cycle of the development of more and more demanding
rendering algorithms to achieve Photorealism, in the game-engines each
year, which require more and more resources

2.	 the never-ending cycle of requiring customers to buy more and more new
Expensive Graphic Processors each year

3.	 the never-ending cycle of more and more electricity required to power these
new Expensive Graphic Processors

4.	 the clipping of moving or animated 3D models into each other
5.	 the crude micro models of molecular and particle physics used by the

Graphics Processor
6.	 the crude macro models of mechanical physics used by the Central

Processor, to create worlds whose mechanics appear realistic and therefore
add to the Photorealism

7.	 the macro models of mechanical physics run by the Central Processor, that
bear no relation to the micro model of molecular and particle physics run
by the Graphics Processor.

The never-ending cycle of the development of more and more demanding render-
ing algorithms to achieve Photorealism, in the game-engines each year, results in

85LPmud Software Production Process

the need for more and more powerful Graphics Processor to run these algorithms or
Hardware Rendering processes. And in the need for more and more greater capacity
of the storage media used to hold the data being rendered. And in the need for faster
and faster speeds of communication between the storage media and the Graphics
Processor.

The never-ending cycle of requiring customers to buy more and more new
Expensive Graphic Processors each year results in customers having to discard old
Graphic Processors whose potential is never fully realised. Thus producing a vast
amounts of waste of money and Graphics Processors which are thrown away or
discarded.

The never-ending cycle of more and more electricity required to power these
new Expensive Graphic Processors also produces more and more waste. This
electricity could be used to produce something more tangible or more useful to
society.

The clipping of moving or animated 3D models into each other results in char-
acters clipping into walls, or into the camera, or other characters, or vehicles in the
Game World. And once you notice them, this spoils the illusion and reveals how
shallow and hollow the Game World is.

The crude micro models of molecular and particle physics used by the Graphics
Processor are used to simulate complex biological and atmospheric phenom-
ena, such as fog, sunlight, wind and waves across a river, lake, sea or a field of
grass. But this is based on nothing more than parallel processors running Linear
Algebra, parsing and editing vertices of 3D models, parsing and editing pixels on
Textures and blending colours of the pixels on Textures or the screen. There is
no way something as rudimentary as Linear Algebra, vertices of 3D models and
colours of pixels can begin to capture such complex biological and atmospheric
phenomena.

The crude macro models of mechanical physics used by the Central Processor
are more often than not non-deterministic. This results in, amongst other things,
if you have two computers or Game Clients playing a multiplayer game on a local
computer network, trying to simulate the physics in the same Game World, then
the results on the two computers diverge very quickly after a short amount of time.
And this requires regular correction from an authoritative source, normally another
computer simulating the same physics called a Game Server. It also means that if
you start the same simulation of the physics in a Game World, from the same starting
point, with the same physical items, on the same computer, you will not get the same
results after a set amount of time.

The crude macro models of mechanical physics (i.e. Newtonian Physics and
Inverse Kinematic Physics) run by the Central Processor, which uses two branches
of mathematics i.e. Newtonian Mechanics and Kinematic equations. These bear
no relation to the crude micro models of molecular and particle physics run by the
Graphics Processor, which uses another branch of mathematics i.e. Linear Algebra.
Therefore, there are two competing models, not one single unified model of physics
used to achieve Photorealism in Computer Games. That in turn means it is harder
to explain how Photorealism is achieved using these two models. And that in turn
means it is harder to train people in it.

86 Event-Database Architecture for Computer Games

1.3.7.3  Application: Reusability of Intermediate Data
The second rudimentary flaw to the claim that the longer Software Rendering and
Hardware Rendering processes of commercial game-engines are necessary is the
intermediate data generated in these processes.

The Software Rendering process of the Event-Database Architecture, per-
formed with the Central Processor, produces intermediate results which are avail-
able to another process to reuse. For example, it produces projections of the bounding
boxes around the Game Objects, on the screen, in the Projected Shapes. And it
uses this to filter out or cull the Objects which are not in the area of visibility in front
of a Camera Object.

The Software Rendering process also produces the order of Objects in the line
of sight of the Camera Object in Projected List. Other Game Objects or staff can
reuse the data, in these Tables, to either find the Objects in the line of sight of the
Camera Object. To find which Objects were in front of other Objects and which
were partially or completely obscured in the line of sight. Or to find which Objects
were under the mouse cursor on the screen.

But with these commercial game-engines, this information is lost. Such data is
just one of the many intermediate results produced in the 20 ‘passes’ through the
steps of Hardware Rendering process with the Graphics Processor. These interme-
diate results remain in the special Graphics Memory only available to the Graphics
Processor. And typically, these are not made available for reuse in the main com-
puter memory by the Central Processor.

In rare occasions, when some of these results are returned back, from
Graphics Memory to main memory, this is done in order to parse the data and
send it straight back to the Graphics Memory for another ‘pass’ of the Hardware
Rendering process. To achieve a graphical effect. And the data remains in a low-
level form, at the level of pixels, not in a higher level form, at the level of Game
Objects.

For example, you can tell which pixels are in the line of sight of the camera,
which pixels are obscured or not obscured in the line of sight. But you cannot
tell which Objects are in the line of sight of camera. Or which Objects are par-
tially or completely obscured in this line of sight. Unless you manually do the
calculations yourself with the Central Processor, or you extract the data from
the Graphics Memory using very obscure low-level technology i.e. Assembly
Language or Machine Code. But with the Event-Database Architecture, these
calculations are automatically done for you. And you just need to look up the
results in the Database Tables. Using high-level technology i.e. a Relational
Database Management System.

1.3.7.4  Application: Obscurity of the Sub-Processes
The third rudimentary flaw to the claim that the longer Software Rendering and
Hardware Rendering processes of commercial game-engines are necessary is that
there is a lot of obscurity in these complex processes.

For example, if you look back carefully at image Figure 1.30 shown earlier, which
involves 20 ‘passes’ through the steps of the Hardware Rendering process, you will

87LPmud Software Production Process

see that a lot of those ‘passes’ are undocumented, and mysterious. They have cryptic
names such as

•	 “NiagaraEmitterInstanceBatcher_ExecuteTicks
•	 PrePass DDM_AllOpaque
•	 BuildHZB
•	 Other Children?”

Source: The measurements of the times taken to execute 20
‘passes’ through the process of Hardware Rendering with

the Graphics Processor, during one Unit of game time or Frame,
reported by the Profile GPU Unreal Console Command,

for a game being built with the Unreal Engine.

The beginning and end of sub-processes, within the Hardware Rendering
process, is obscured or blurred, in commercial game-engines. One of the sub-
processes is called the ‘Occlusion Test’. The name ‘Occlusion Test’ is itself an
obscure term used to refer to the process of culling or filtering out Objects, or
parts of Objects, which are not in the area of visibility in front of a camera. In
Fig 1.30, you can see that there is a ‘pass’ which is named after the ‘Occlusion
Test’ called

“BeginOcclusionTests”.

Source: The measurements of the times taken to execute 20 ‘passes’
through the process of Hardware Rendering with the Graphics

Processor, during one Unit of game time or Frame, reported
by the Profile GPU Unreal Console Command, for a game

being built with the Unreal Engine.

Now this ‘pass’ only marks the beginning of the ‘Occlusion Test’. It does not mark
the end. So you cannot tell where the ‘Occlusion Test’ begins and ends.

The time taken up by the Graphics Processor in that ‘pass’ is not the total time
taken to perform the ‘Occlusion Test’. There are other ‘passes’ involved. But these
are obscured by cryptic names. One of them is the ‘pass’ called

“BuildHZB”

Source: The measurements of the times taken to execute 20 ‘passes’
through the process of Hardware Rendering with the Graphics

Processor, during one Unit of game time or Frame, reported
by the Profile GPU Unreal Console Command, for a game

being built with the Unreal Engine.

Here is how one article describing this ‘pass’.

“In this chapter you’ll learn about:

•	 What is a rendering pass
•	 Over 20 kinds of passes in Unreal – lighting, the base pass or the mysterious

HZB

88 Event-Database Architecture for Computer Games

•	 What affects their cost (as seen in the GPU Visualiser)
•	 How to optimise each rendering pass

…

HZB (SETUP MIPS)

Responsible for:

•	 Generating the Hierarchical Z-Buffer

Cost affected by:

•	 Rendering resolution

The HZB is used by an occlusion culling method 1 and by screen-space techniques
for ambient occlusion and reflections 2.”

Source: Unreal’s Rendering Passes © 2019. Oskar Świerad. Page 143

You would never guess from its name ‘BuildHZB’ that this ‘pass’ had anything to
do with reflections of light. Nor that it has anything to do with the ‘Occlusion Test’.
And what is more that ‘pass’ does not mark the end of the ‘Occlusion Test’. Some
other ‘pass’ marks the end of the test. But you cannot tell from any of the names of
the 20 ‘passes’ in Figure 1.30 which ‘pass’ marks the end of the test.

Whereas with the Event-Database Architecture the beginning and end of
the ‘Occlusion Test’ is the beginning and the end of the Software Rendering
process with the Central Processor. That test is the primary objective of that
process. The process begins when the Objects involved in the ‘Occlusion Test’
are taken off the 2D Graphics List and 3D Graphics List. And it ends when
the projection of the bounding boxes around these Objects, on the screen, has
been placed in Projected Shapes. And when some of the Objects in Projected
Shapes which meet some criteria, typically whether their bounding boxes are
partially or completely visible on the screen, have been selected and put on the
Projected List.

So with the Event-Database Architecture, you can tell the beginning and end of
the ‘Occlusion Test’. But with these commercial game-engines with 20 ‘passes’, the
beginning and end are obscured.

1.3.7.5  Application: Obscurity of Graphics with Physics
The fourth rudimentary flaw to the claim that the longer Software Rendering and
Hardware Rendering processes of commercial game-engines are necessary is the
obscurity of graphics with physics. That arises from the need to achieve Photorealism.

Whatever Photorealism is achieved dynamically with Graphics Processors
and Hardware Rendering can be achieved statically with Central Processors and
Software Rendering. The only difference is the size of the Game Database.

In the latter case, the processing has to be done before the game is built. Normally
by Computer Aided Design or CAD Tools or Rendering Farms27 built for that pur-
pose. And the results have to be added to the Game Database. Furthermore, the
results are static.

89LPmud Software Production Process

However, in the former case, the processing can be done after the game is built
and while it is running or being played. The results do not have to be added to
the Game Database. Therefore, the Game Database is relatively smaller. And the
results are dynamic.

Now some would say, with respect to Photorealism, that a dynamic result is more
‘realistic’ than a static result. But a dynamic result requires you to move from the
realm of graphics, into the realm of physics. And start creating realistic physical
models that effect lighting, or shadows, or the movement of particles, or sparks of
fire, or splashes of water and so on. While attempting to do so with specialised
Graphics Processors and crude mathematics, which were never meant to simulate
physical models but graphical models.

1.3.7.6  Application: Scalability of the Processes
The fifth rudimentary flaw to the claim that the longer Software Rendering and
Hardware Rendering processes of commercial game-engines are necessary is the
scalability of the results.

None of the techniques used in the 20 ‘passes’ of the Hardware Rendering pro-
cess of commercial game-engine, shown in Figure 1.30 earlier, are scalable. Once
the number of parameters involved (e.g. the number of Game Objects, light sources
and reflective surfaces) exceeds a certain threshold, the Hardware Rendering pro-
cess has not got the capacity to handle it. It physically cannot store many Game
Objects, light sources, reflective surfaces and so on in the Graphics Memory used
by the Graphics Processor. And it cannot calculate the effects of all of these in ‘real-
time’ i.e. 60 Frames per second. The performance of the process drops dramatically
or it completely fails. No matter how powerful or costly the Expensive Graphics
Processor is. No matter how large the Graphics Memory is available.

Whereas with the Event-Database Architecture, at least the part of the process
which involves Software Rendering with the Central Processor is scalable. It can be
distributed across a cluster or network of computers.

As with the Physics Host, there can be more than one instance of the Graphics
Host distributed across a computer network. You can have a pool of computers,
of any size, performing Software Rendering of the Game World for all the Game
Clients or players on the network. Each computer in the pool runs its own instance
of the Graphics Host.

The only difference comes with respect to Hardware Rendering with a Graphics
Processor. In this case, the distribution of the work done by the Graphics Host is
limited by the number of computers the players have physical access to. For each
player, you can only have one computer or Game Client rendering the graphics of
the Game World that the player can physically see. And the player requires physical
access to two computers or Game Clients to double the amount of rendering. With
two Game Clients looking at the Game World from the viewpoint of two different
Camera Objects.

For example, one Camera Object may be looking towards the left-hand side of
the player and another looking towards the right-hand side. Or one may be looking
towards front of the player and another looking towards the back. Or one may be
looking through the left eye of the player and another looking through the right eye.

90 Event-Database Architecture for Computer Games

The latter configuration would suit Virtual Reality Headsets where the player can put
on goggles which show two different views of the Game World, through the player’s
character’s right eye and left eye.

As with the distribution of the work done by the Physics Host, distributing the
work done by the Graphics Host would require you to purchase more equipment
for the computer network. That could handle the greater bandwidth or throughput
required to send information across the computer network.

This method for distributing the rendering of the Graphics Host has already been
described in the subchapter entitled

Multi-User Distributed Client Server Form

in

The Event-Database Architecture for Computer Games: Volume 1, Software
Architecture and the Software Production Process.

Alternatively, the Graphics Host does not need to render 2D or 3D graphics at all.
You can begin with a simple form of the Graphics Host which shows the Game World
using different forms of projection apart from PERSPECTIVE PROJECTION.
And then later on replace this with a Graphics Host in a more complex form which
renders a Graphical User Interface, when you get closer to the end of the production
process. This enables you to concentrate on developing the core features of the game
design without worrying about the details of the Graphical User Interface until later
on in the production process.

These alternative forms of projection would include

•	 ORTHOGRAPHIC PROJECTION
•	 ISOMETRIC PROJECTION
•	 CHROMATIC PROJECTION
•	 AUDIO PROJECTION
•	 TEXTUAL PROJECTION

In an Orthographic Projection, three views of the Game World are shown on the
screen, from the top, side and front of a cube centred around the player. The shapes
of Game Objects are not distorted. Therefore, it is quick and easy to project the
three views onto the screen because the mathematics involved is simpler.

In an Isometric Projection, which is a form of Orthographic Projection, the
vertices within the cube centred around the player are rotated 30 degrees around the
X-axis or the vector pointing to the right of the player, and 120 degrees around the
Z-axis or vector pointing up from the player. Therefore, a 3D view of the shapes of
Game Objects is displayed in one view. This is quick and easy to project because
again the mathematics involved is simpler.

In a Chromatic Projection, all the Game Objects in the Game World are made
from shades of a few colours and have no hint of black, white or grey. Any sense of
depth or distance of an Object is determined by its shade. Every Object is projected

91LPmud Software Production Process

onto one of a limited number of 2D planes on the screen. All the Objects on the
same plane have roughly the same depth and the same shade of colour. Therefore, a
3D view of the shapes of Game Objects is displayed in one view. And this is quick
and easy to project because again the mathematics involved is simpler and all you
need is one colour or Texture to render everything in the Game World.

There is a wide spectrum of examples of Chromatic Projection. On one extreme
are Japanese wave paintings where all the items in the world are presented with just
four colours, including white. And on the other extreme there are abstract paintings
by the likes of Barnett Newman, Mark Rothko and Alan Ebnother, where all the
items are just presented with one or two colours. Some may say that in the latter case
their paintings of the world are so abstract and far removed from reality that they are
useless. But that is not the point. The point is whether you can represent the Game
World on the screen, without photo realism. And yet convey information just by the
simple use of colours.

In an Audio Projection, every Game Object in the Game World is assigned a
unique sound in the Database Table of sound streams. See the chapter entitled

Sound Stream Table

in the LPmud data design. Now some animated Objects may already have natural
sounds assigned to them by the game design e.g. a river, a cow or a sheep. But you
have to assign sounds to all Objects, including inanimate Objects as well such as a
rock, a chair, a table or a button on a menu. These would include assigning sounds to
Text Objects which should be an actor audibly speaking the text being displayed by
that Object. This would also include assigning a unique sound for all the NPCs and
the interactive Player Characters.

The sounds of the Objects nearby would be periodically played by the Sounds
Host and heard by the player. And this mixed sound will correspond to all the items
nearby in the Game World or on a menu. The screen itself will not show the items
in the Game World or on the menu but a representation of the sounds being heard.
For example, it may just show the names of the sounds being generated. Or it may
show a 2D or 3D wave produced by the mixture of sounds which were being gener-
ated in the Game World by the Sounds Host. Therefore, the Game Objects would
be quickly and easily represented on the screen. In a form which is useful for both
Sound Designers, players or staff who suffer from a poor eyesight for one reason or
another and rely on their hearing.

In a Textual Projection the User Interface is displayed using only text, like the
one used by the original LPmud.

For example, suppose there were some parts of the game design where the player
has to go to one location in the Game World and search for some item. Let us say this
item is some hidden sword in a farmer’s field. And the player has to return this sword
to another character, a swordsman in a mountain pass who has lost the sword. Now
all that matters in this case is the Game Objects for

the farm
the farmer’s field

92 Event-Database Architecture for Computer Games

the hidden sword
the mountains
the mountain pass
the swordsman in the mountain pass.

All that matters is that the player can go to the farm. That the player can go to the
farmer’s field. That the sword is initially hidden and not visible in the field. That the
player has to search and find the sword in the field. That the player can pick up the
sword. That the player can carry the sword back to the swordsman. That the player
can give the sword back to the swordsman. That the swordsman rewards the player
for returning the sword.

So all the Graphics Host has to show is the farm, the farmer’s field, the hidden
sword, the mountains, the mountain pass and the swordsman. And show the player’s
distance from these items. And show the distance changing as the player gets closer
or moves further away. And show the exits or directions the player can move in from
the current location. And show the player’s commands e.g.

[Farm dist: 1000m]
[Exits: n s e w]
> e
[Farm dist: 800m]
[Exits: n s e w]
> e
[Farm dist: 600m]
[Exits: n s e w]
> e
[Farm dist: 0m]
[Exits: n s e w]

And when the player reaches, the farm, the game shows the different parts of the
farm the player can see and move into. Showing the parts ordered by distance from
the player, in the same order these would be rendered in a Graphical User Interface.
by the Graphics Host. That is to say the furthest part is shown first, then the second
furthest and then the third furthest and so on e.g.

[Farmer’s Field South dist: 30m]
[Farmer’s Barn dist: 10m]
[Farmer’s house dist: 5m]
[Exits: n s e w]

And then show the different parts of the farmer’s field when the player reaches
the field e.g.

[Farmer’s Field North dist: 100m]
[Farmer’s Field East dist: 100m]
[Farmer’s Field West dist: 100m]

93LPmud Software Production Process

[Farmer’s Field South dist: 0m]
[Exits: n s e w]

And when the player reaches the spot containing the hidden sword, show the hid-
den sword e.g.

[Farmer’s Field East dist: 0m]
[A hidden sword dist: 0m]
[Exits: n s e w]

And when the player has picked up the hidden sword, show the resultant action e.g.

get sword

[You pick up the sword, and throw it over your shoulders into your backpack]

And after the player has picked up the sword, show the path to the mountain
pass e.g.

[A mountain dist: 1000m]
[Exits: n s e w]
> ne
[A mountain peak dist: 800m]
[A mountain pass dist: 60 m]
[Exits: n s e w]
> ne
[A mountain peak dist: 740m]
[A mountain pass dist: 0m]
[A swordsman]
[Exits: n s]
> n

And when the player gives the hidden sword to swordsman, show the reward the
player receives e.g.

[A mountain peak dist: 740m]
[A mountain pass dist: 0m]
[A swordsman]
give sword to swordsman
[A swordsman]: Thank you for returning my sword! Here, take this as a token

of my gratitude!
[A swordsman hands you 1000 talents of gold]
[Exits: n s]

In this way, the Graphics Host with a Textual Projection would show a User
Interface that would be akin to a storyboard for a movie script. It will show you a

94 Event-Database Architecture for Computer Games

rough outline of each scene in the movie, without much detail. Until the 2D poly-
gons, 3D Meshes, Textures, Texture coordinates, Materials and animations required
to render these Game Objects had been built.

Another advantage of a Textual Projection is that it can be used to train an Artificial
Neural Network which understands, generates and interprets natural language or human
language, to play the game. An example of this is a Language Learning Model men-
tioned in subchapter 1.3.5.2 - Application:Flaws in Back Propagation.

The Projection will give the Model a textual description of a room or location or
scene in the Game World. And the Model can use this to predict the missing word
at the end of that sentence or paragraph. That missing word being the commands
or words that the characters being controlled by interactive or human players enter,
through the User Interface, in response to that description. The Artificial Neural
Network would be trained automatically by being fed the descriptions of the rooms
or locations or scenes in the Game World, as the Initial Inputs of its Training Data.
And the commands or words that the players enter in response to this description,
and the probability of those commands, as the Final Outputs of its Training Data.

And once trained, whenever the Artificial Neural Network is fed the description
of a room or scene in the Game World that an NPC enters, it will try to predict the
missing word or command that goes with that description. And the word it predicts
will be given as a command to that character to execute. And play through that scene
using what Artificial Neural Network has learnt from the Training Data.

What is more there will be no bias in the Training Data. So long as every players’
reaction to the description of that room or location or scene in the Game World was
immediately recorded in the Final Outputs of the Data. And the Artificial Neural
Network was immediately and automatically trained with the new entry in the Data.
Through Forward Propagation from the Initial Inputs which is the description of
the room, to the Final Outputs, which is the player’s command. Followed by a Back
Propagation to adjust the Weights of the Inputs of the artificial Neurons due to the
loss in the Final Outputs.

You cannot train an Artificial Neural Network to do this automatically with a
Graphical User Interface when the game design is changing. Someone has to
manually select metrics in the Game World which can act as the Initial Inputs of
the Training Data. And someone has to manually select the metrics in the Game
Controllers or the Game World to act as the Final Outputs of the Training Data.
And there will be a bias in this selection. Furthermore, the metrics in the Game
World and in the Game Controllers may change as the game design changes. And
items were added, removed or edited in the Game World, or commands were added,
removed or edited from the User Interface.

Another advantage of all these different forms of projection is that they could be
used to improve the experience of the players in a multiplayer game. They could give
the players the ability to choose between

Orthographic Projection
Isometric Projection
Chromatic Projection
Audio Projection

95LPmud Software Production Process

Textual Projection
Perspective Projection.

And if the players want to, for example, reduce the latency or lag, on their Game
Client, in response to any commands they issue across the computer network, then
they could switch from a Perspective Projection to a simpler Chromatic Project
or Textual Projection. If some of players suffered from poor eyesight, then they
could switch to an Audio Projection. If some of the players had motion sick-
ness from watching the Game World from a Perspective Projection, then they
could switch to an Orthographic Projection. If some of the players suffered from
epileptic fits from the images of the Game World, then they could switch to a
Chromatic Projection.

1.3.7.7  Application: Power Is Limited, Imagination Is Not
The sixth rudimentary flaw to the claim that the longer Software Rendering and
Hardware Rendering processes of commercial game-engines are necessary is
the limitations these impose. Not just the limitations of the power that Graphics
Processors require alluded to in the previous subchapter. But also the limitations
these impose on human imagination.

Now the goal of Hardware Rendering processes and Graphic Processors is to
produce better games. That is why these are the focus of the software architectures
of the most popular commercial game-engines. But there are other ways you can
produce better games which are focused on human imagination. And this is the focus
of the Event-Database Architecture. So what is a better game?

There is one school of thought in the Computer Games industry, who advocate
Photorealism. They would define a better game as a game with better graphics. That
is to say a game with better Photorealism, with more realistic and immersive Game
Worlds is better than one with less Photorealism.

There is a second school of thought. They would define a better game as a game
with better gameplay mechanics or features. That is to say, the greater the number of
ways the players have available to reach the goals of the game, the better the game
is. The greater the number of bodies (i.e. characters, creatures, NPCs, environments,
artifacts in these environments, animate and inanimate bodies) in the Game World,
the greater the number of possible interactions between these bodies, the greater
the number of commands available in the User Interface, that the players can use to
reach their goals, the better the game is.

There is a third school of thought that would claim a middle ground which defines
it both ways. That is to say, a better game is one which has both better immersive
Photorealism and better gameplay mechanics or features.

Now most Software Developers would like to believe they fall into this third
school of thought. That they would not favour one definition over the other and
would always choose a more balanced approach or middle ground when they make
computer games.

But what is the truth? Let us look at the consequences that result from these
three definitions. And compare the results with what we see in the Computer Games
industry.

96 Event-Database Architecture for Computer Games

Now, the natural consequence, in the case of the first definition of a better game
based on Photorealism, would be the concentration of resources in the Computer
Games industry on more and more demanding rendering algorithms to produce
Photorealism. That in turn require more and more advanced Hardware Rendering
processes and Graphics Processors. That in turn require more and more electrical
power and resources to run.

The natural consequence, in the case of the second definition of a better
game based on greater gameplay mechanics or features, would be a concentra-
tion on human resources and imagination in the industry. To come up with a
greater and greater number of bodies in the Game World, a greater number of
interactions between these bodies and a greater number of commands in the
User Interface. That could be used in a greater variety of ways to achieve the
goals of a game.

The natural consequence, in the case of the third definition of a better game based
on both Photorealism and gameplay mechanics, would be an equal rise in demand
of resources. That is to say an equal rise in demand for more advanced Hardware
Rendering processes and Graphics Processors. And an equal rise in demand for
more human resources to imaginatively construct greater and greater number of
bodies in the Game World, greater number of interactions between those bodies and
greater number of commands in the User Interface.

What you see in the Computer Games industry is not the latter two, but only the
former consequence. This is reflected in the marketing material of the popular com-
mercial game-engines. Here are some examples:

‘UNREAL ENGINE 5 – WHAT IT’S ALL ABOUT

...

UNREAL ENGINE 5 – EXPECTATIONS

Understandably, there are high expectations for Unreal’s newest launch. Last year, an
article from Perforce said UE5 would change the industry because “…it will enable
truly immersive experiences – while reducing the complexity of building games, as
well as in film and animation.”

It’s not just developers who are excited about what next-gen graphics can bring.
Some recent studies reveal that upwards of 75% of gamers make purchases based on
graphics quality.

...

DID UNREAL ENGINE 5 (EARLY ACCESS VERSION) LIVE
UP TO EXPECTATIONS?

When UE5 was first announced, Epic made it clear what the main goal was: “[to]
achieve photorealism on par with movie, CG, and real life,” all while keeping these
tools accessible to teams in the industry.

This is a huge promise. They didn’t say it was meant to look “good;” they claimed
to keep up with photorealism in every industry. So the question is: Did they live up
to it?

...

97LPmud Software Production Process

MetaHumans

The announcement and early access of MetaHuman Creator resulted in whispers
throughout the industry of what impact this amazing software could have on game
development moving forward. Shortly after opening MHC, you’ll notice just how easy
it is to create photorealistic characters, customized to your needs….’

Source: Unreal Engine 5 – What It’s All About? © 2021.
Incredibuild. Joseph Sibony. Page 155

‘Unity and Unreal Engine are two of the most prominent game engines in the industry,
known for their cutting-edge capabilities in rendering photorealistic graphics. Both
engines have been extensively used in the development of AAA games, architectural
visualizations, and various other applications that demand high-fidelity visuals. In
this exploration, we will delve into the strengths and distinguishing features of each
engine when it comes to achieving photorealistic graphics.

UNITY

... However, in recent years, Unity has made significant strides in enhancing its graphics
capabilities, cementing its position as a powerful engine for photorealistic rendering.

1.	 High-Definition Render Pipeline (HDRP): Unity’s HDRP is a state-of-the-art
rendering pipeline designed specifically for high-fidelity graphics. It supports
advanced features such as real-time global illumination, physically-based ren-
dering (PBR), and high-dynamic-range (HDR) lighting, enabling developers to
create highly realistic and visually stunning environments.

2.	 Scriptable Render Pipeline: Unity’s Scriptable Render Pipeline (SRP)
allows developers to customize and extend the rendering process... This
flexibility enables advanced techniques for achieving photorealistic results
tailored to specific project requirements.

3.	 Real-Time Ray Tracing: With the introduction of real-time ray tracing sup-
port, Unity has opened the door to accurate simulations of light behavior,
enabling realistic reflections, shadows, and global illumination effects...

4.	 Asset Importers and Optimization: Unity’s robust asset import pipeline
and optimization tools ...ensuring efficient rendering and performance opti-
mization for photorealistic graphics.

5.	 Integration with Industry-Standard Tools: Unity seamlessly integrates with
industry-standard tools such as Autodesk Maya, 3ds Max, and Substance
Painter, allowing artists and developers to leverage their existing workflows
and pipelines for creating photorealistic content.

…

Unreal Engine

…

6.	 Chaos Physics and Destruction: Unreal Engine’s Chaos physics and
destruction systems enable realistic simulations of rigid body dynamics,
soft body deformations, and large-scale destruction events, adding to the
overall level of realism and immersion.’

Source: Unity vs Unreal: Exploring Cutting Edge of Photorealistic
Graphics © 2024. Oodles Technologies. Page 157

98 Event-Database Architecture for Computer Games

The bias towards Photorealism in the Computer Games industry is so much so
that the Photorealism in the popular game-engines is marketed as a science which
has application in Film, Manufacturing and Architecture. When to be honest it is, if
anything, a misapplication.

It is a misapplication because you are not using these sciences as diagnostic or
prognostic tools, to analyse the external and internal mechanics of physical bodies in
the real world. Instead, you are using these sciences to give the external appearance
of imaginary bodies in a Game World the external appearance of physical bodies in
the real world. Ignoring the differences between the internal mechanics of the imagi-
nary bodies and the internal mechanics of physical bodies. The internal mechanics
of the imaginary bodies in the Game World are hollow and made up of pixels. The
internal mechanics of physical bodies in the real world are solid and made up of
physical materials.

The mathematics involved in creating Photorealism, including Newtonian
Mechanics, Kinematic equations and Linear Algebra, maybe sciences. But their
application in Photorealism is not a science. It is at best an art, and at worst a sleight
of hand, a magic trick for kids or a circus act with smokes and mirrors.

Nevertheless, given the obsession with Photorealism in the Computer Games
industry, it is not surprising then that the definition of a better game as a game with
better Photorealism is the most prevalent. However, this means that the capacity
of commercial game-engines which cater to this definition will always be limited.
Whereas the capacity of the Event-Database Architecture which does not cater to
this definition is not limited in the same way.

For power is limited but the human imagination is not. That is to say the elec-
trical power required to run these Graphics Processors, that in turn produces this
Photorealism, that in turn the commercial game-engines rely on, will always be lim-
ited. But the imaginative ways in which the staff or players can come up with game-
play mechanics or gameplay features are not limited.

And this is what the Event-Database Architecture caters for. Namely, the ability
for large numbers of staff and players to use their imagination, to collaborate to a
scale which is not possible with commercial game-engines. It simply does not fit into
the paradigm of a single-user game editor which these game-engines are based on
(see the definition of game editors in the Glossary).

With the Event-Database Architecture, they can use their imagination to gener-
ate gameplay mechanics or features, including the following:

1.	a single unified model of physics rather than the multiple models of physics
used by the commercial game-engines (i.e. crude micro models of molecu-
lar and particle physics run by Graphics Processors, and crude macro mod-
els of mechanical physics run by Central Processors)

2.	more unique NPCs
3.	NPCs with better Artificial Intelligence
4.	bigger crowds or populations of NPCs in a city or town
5.	better simulation of complex social and biological ecosystems
6.	more original stories and locations, not based on film franchises
7.	puzzles based on reflection, refraction and absorption of light.

99LPmud Software Production Process

An example of a latter would be a part of the Game World of LPmud where the
player uncovers a tomb buried in a mountain. The tomb is made up of a network of
chambers connected by hallways running through the mountain. At the centre of
the mountain lies the body of an ancient king buried in the main chamber. And to
enter the main chamber, the player has to direct sunlight from outside the mountain,
through the network of dark doorways and hallways, to a switch on the side of the
door that leads into the main chamber. And that in turn requires the player to place
a series of mirrors which guide the light from outside of the mountain, through the
network of dark hallways, to the entrance of the main chamber.

Now the gameplay feature here is the reflection of light. It requires sunlight to be
reflected off a sequence of mirrors in the right order, beginning with a mirror outside
the mountain, and ending in a mirror next to the entrance of the main chamber. The
rendering algorithms of commercial game-engines make no provision for this.

Firstly, typically the Hardware Rendering processes and Graphics Processors
these game-engines use will not render the reflection off the surface of mirrors out-
side of the area of visibility immediately in front of the player’s eyes or camera, in the
Game World. This would be done nominally for the sake of efficiency and improving
the performance of the game. But this efficiency would actually end up breaking the
Photorealism in the case of this gameplay feature.

Secondly, even if you extended this area of visibility to cover the whole mountain,
the order in which the Hardware Rendering process and Graphics Processor would
render the reflection off the surface of each mirror would be arbitrary. You would
have to heavily customise the Hardware Rendering process to render the reflections
off the mirrors in the right order.

Thirdly, say you have seven mirrors which the player has to align to direct the sun-
light to the main chamber, numbered 1–7. In the order these had to be set up to open the
chamber. Beginning with the mirror outside the mountain, directing the sunlight into
the mountain and ending with the mirror next to entrance of the main burial chamber,
inside the mountain. When the mirrors have been correctly aligned, mirror 1 is going
to contain a reflection of the sun and the image of mirror 2. And mirror 2 is going to
contain a reflection of the image of mirror 1 and mirror 3. And mirror 3 is going to con-
tain a reflection of mirror 2 and mirror 4 and so on and so on. But no matter what order
in which you choose to render the reflections off the surface of the mirrors, either from
1 to 7 or 7 to 1, the reflection of each mirror is always going to be incomplete. That is
to say, it will show the reflection of an adjacent mirror whose surface is blank because
the image on that adjacent surface has not been rendered yet. If you start with mirror 1,
the reflection of mirror 2 is going to be blank, because the surface on that has not been
rendered yet. If you move to mirror 2, then the reflection of mirror 1 will be incomplete
because it would contain the blank surface of mirror 2. And the reflection of mirror 3 is
going to be blank, because that has not been rendered yet, and so on and so on.

Fourthly, typically Objects which were far away from the player would either
not be updated or rendered, in most commercial game-engines. Only the Objects
which were close enough to the player for the player to notice would be updated or
rendered. This means if the player were deep down inside a mountain, looking far
above, through a series of mirrors at a view outside the mountain, then some or all
of the Objects which were outside the mountain would not be updated or rendered.

100 Event-Database Architecture for Computer Games

So the features that the player would normally see outside the mountain, like the
sun moving across the sky, clouds being blown by the wind, trees or grass sway-
ing in the wind, or other characters walking by and so on, would either be static
or missing. When viewed from deep inside the mountain and through a series of
mirrors. This would be done nominally for the sake of efficiency and improving the
performance of the game. But this efficiency would also actually end up breaking the
Photorealism in the case of this gameplay feature.

Fifthly, the Hardware Rendering process and Graphics Processor used by these
commercial game-engines have no provision for telling you whether or not the
mirrors have been aligned correctly. Such that the sunlight has been successfully
directed from outside the mountain to the main chamber deep inside the mountain.

In the case of gameplay features like this, which depend on the reflection of light,
it is far simpler to bypass the Hardware Rendering process and Graphics Processor
entirely. And to use the Central Processor instead.

Now with the Event-Database Architecture, this feature is trivial to implement.
You can see an example of this at the end of the subchapter:

Graphics Host

in

The Event-Database Architecture for Computer Games: Volume 1, Software
Architecture and the Software Production Process.

Basically, you set up a series of Camera Objects one behind each mirror facing
the front or reflective surface of the mirror. And you set up each Camera Object to
project what it sees onto the reflective surface or the Texture of the mirror. During
each projection, the Software Rendering process of the Graphics Host will create an
entry in the Database Table or Projected List for each Camera Object. That list all
of the Objects visible by that Camera Object, including other mirrors.

So if you look at the Projected List of the first Camera Object or first mirror,
then you should see the Object for the sun and the Object of the second mirror.
Assuming the player has correctly aligned the first mirror. And if you look at the
Projected List of the second Camera Object or second mirror, then you should see
the Object of the first mirror and Object of the third mirror. And so on and so on.
Therefore, by traversing the hierarchy of references in the Projected Lists of all the
mirrors, from the beginning to the end of the sequence, you can determine whether
the player has been successful. And the sunlight has been directed, from outside the
mountain to the entrance of the main chamber.

That is the default solution that comes with the standard Event-Database
Architecture. But the staff or players do not have to stick with that solution. They
can use their imagination to come up with a better solution based on the rudimentary
principles of the Event-Database Architecture.

For example, they could add a PRIMARY REFLECTION EVENT and a
SECONDARY REFLECTION EVENT to the set of Events recognised in the
Architecture.

101LPmud Software Production Process

A Primary Reflection Event would be an Event sent by the Graphics Host,
whenever it projected Objects onto a Texture. In this case, when it projected Objects
through the Camera Object behind each mirror. This Event would be a property of
a Camera Object in the Database Fields of its Camera Object Record. And not all
Camera Objects will have this property. Only the Camera Objects which project
Objects onto the reflective surface of a mirror would have it set.

A Secondary Reflection Event would be an Event which followed on from the
Primary Reflection Event, which would be sent to a Game Object that was being
reflected by the mirror. This will be a property of any Game Object, including Camera
Objects. And not all Objects will have this property set. Only Objects which wanted
to receive an Event when these were reflected in a mirror would have it set.

Furthermore, they could assign to each Camera Object behind a mirror, a
Database Table that maps the Secondary Events it receives, to Primary Events it
should send.

Now when a Graphics Host projects Objects through the first Camera Object
behind a mirror, onto the surface of the first mirror, and that Camera Object has a
Primary Reflection Event set in its properties, it would attach all the Secondary
Reflection Events of the projected Objects to that Primary Reflection Event. This
includes the Secondary Reflection Event of the first Camera Object. And the
causer of all those Secondary Reflection Events will be set as the first Camera
Object. And then it will send that Primary Reflection Event.

When the second Camera Object behind the second mirror receives its
Secondary Reflection Event, it will check the causer of that Secondary Reflection
Event. If the causer were a mirror and had a Primary Reflection Event, then
it would attach all of the Secondary Reflection Events attached to the mirror’s
Primary Reflection Event to the second mirror’s Primary Reflection Event. In
this case, assuming the player had correctly aligned the first mirror to reflect sunlight
onto the second mirror, all of the Secondary Reflection Events of the first mirror
would be attached to the Secondary Reflection Events of the second mirror. After
that the Graphics Host would then repeat the same process with the second mirror
as it did with the first mirror.

That is to say, it will project all the Objects in front of the second mirror, through
the second Camera Object behind the mirror, onto the surface of the mirror. It
would attach all of the Secondary Reflection Events of all the projected Objects
to the Primary Reflection Event of the second Camera Object. But unlike the
first case, this Primary Reflection Event would already have all of the Secondary
Reflection Events from the first projection through the first Camera Object on it.
The Graphics Host will set the causer of all those Secondary Reflection Events as
the second Camera Object. And it will then send that Primary Reflection Event.
And so on and so on.

As the Graphics Host projects the Objects in front of each mirror, through the
Camera Objects behind the mirrors in the sequence, the Secondary Events fol-
lowing on from Primary Reflection Event of each one in turn grow longer than the
preceding one.

When the last Camera Object behind the last mirror in the sequence received
its Secondary Reflection Event, it would check the causer of that Secondary

102 Event-Database Architecture for Computer Games

Reflection Event. If it were a mirror with a Primary Reflection Event, then it will
look through all the Secondary Reflection Events attached to that Primary Event.
To verify that all the mirrors in the sequence and the switch next to the entrance
of the main chamber were being reflected by that mirror. If all of mirrors and the
switch were being reflected, then it would look up its Database Table that maps the
Secondary Events it received to Primary Events it should send out. And assuming
that this Table mapped its Secondary Reflection Event to the Primary Event that
would open the door to the main chamber, it would send the Primary Event. And
the door of the main chamber would be opened.

Now anyone can control this gameplay feature simply by editing Database Records
and Database Tables. Without the need for any specialist knowledge as would be the
case with the commercial game-engines. That rely on Game Programmers, known
as Graphic Programmers, who specialise in graphics and writing Graphic Shaders
to implement a similar feature.

This algorithm will not only tell you when the sunlight was being reflected, through
a sequence of mirrors, from outside of a mountain, to a tomb buried deep inside the
mountain. It will also tell you when any Object was being reflected by a mirror. Or
when an Object was being reflected off each mirror in a sequence of mirrors. Or
when any Object has been successfully reflected from the beginning to the end of the
sequence of mirrors, from one point in the Game World to another. Or when sunlight
is being reflected off a series of mirrors onto a vampire with lethal effect.

Of course, for this algorithm to work, you would need to clear all of the Secondary
Reflection Events attached to all of the Primary Reflection Events, at the end of
each Unit of game time, or Frame.

1.3.7.8  Application: Line of Sight Graphics
An alternative method to detecting the Game Objects in the line of sight of an NPC,
using the Physics Host, would be to use the Graphics Host. This method is simpler
because it does not involve creating new 2D polygons or 3D models.

Instead, you just have to create a new 2D Camera Object or 3D Camera Object
and place this on the head of the 2D polygon or 3D model of the NPC, facing whatever
direction that NPC was facing. You would then add this Camera Object to list of active
cameras in the 2D Camera List or 3D Camera List. And set the Projection Target
Field of that new Camera Object to nothing. So that whatever was seen through that
camera would not be displayed on the computer screen using Hardware Rendering.

Instead the Graphics Host would use that Camera Object only for Software
Rendering to project the bounding box of the Objects in front of the NPC. The
results of the projections would not be put in the main Projected Shapes Database
Table used to display the Game World to the player. Instead, it would be put in a
numbered Projected Shapes Table, given the same number as the instance of that
NPC in the Game World.

For example, the first three NPCs in the Game World would have Tables named

Projected Shapes #1
Projected Shapes #2
Projected Shapes #3

103LPmud Software Production Process

After the projections, the criteria for selecting the ones from Projected Shapes,
which would go into Projected List, would be whether the bounding box of the
Object fell within the viewing frustum of the Camera Object.

The Actions for the 2D Player Object or 3D Player Object, which controlled
that NPC, would then look through the Projected List. To find out the Object IDs
of the Game Objects in front of that NPC, and react accordingly.

1.3.8 A pplication: Procedurally Generated Quests

The system of Events for the game LPmud is so versatile that it will allow you
to create a PROCEDURALLY GENERATED QUEST SYSTEM in the Game
World. That is to say it will allow to generate different types of quests, quests to kill
a special target, quests to find a special item and quests to escort special character,
where the special target, special item or special character changes each time. And
the location of that target, item or character changes each time.

The first part of this Procedurally Generated Quest System would require four
invisible Game Objects or QUEST MARKER OBJECTS which marked the four
corners of a quadrilateral area, in the Game World, where these quests could take
place. These Marker Objects would be placed manually in the Game World by the
Game Designers editing the Game Database.

The second part of this Procedurally Generated Quest System would require an
invisible Game Object or QUEST SPLINES GENERATOR OBJECT that will gen-
erate a fixed number of splines, of random length, with a fixed minimum length, follow-
ing a random path, from one random corner of this boundary to the opposite corner. Each
spline would be an invisible Game Object or QUEST SPLINE OBJECT with a list
of points along that spline, from the beginning to the end. Each spline would be put into
the same Database Table reserved for splines. And the Database Record for each spline
would include a Database Field which listed these points in order. The Quest Splines
Generator Object would respond to the Initial Reset Event to generate the splines and
send a QUEST SPLINES COMPLETE EVENT when it had finished generating.

The third part of this Procedurally Generated Quest System would require
an invisible Game Object or QUEST WAYPOINTS OBJECT which would gen-
erate Waypoints along each spline, with a fixed minimum distance between each
Waypoint, from the beginning to the end. Each Waypoint will be represented by
one highly buoyant Invisible 3D Game Object with a vector pointing to the next
Waypoint and a distance to the next Waypoint along the spline. Each of these buoy-
ant Invisible 3D Game Objects would have its height raised up until it reached the
surface of the Game World, if it was generated beneath the surface. Or it would have
its height lowered downwards until it touched surface, if it was generated above the
surface. This adjustment could be done by the Physics Host if it were modified to
recognise these highly buoyant Invisible 3D Game Objects. And force them up to
the surface if these were underneath the surface, or lower them down with the force
of gravity, if above the surface. This Waypoints Object would respond to the Quest
Splines Complete Event and start generating the buoyant Waypoints.

The fourth part of this system would require an invisible Game Object or KILL
QUEST HANDLER OBJECT which controls the quest where the player has to

104 Event-Database Architecture for Computer Games

kill a special target. This Kill Quest Handler will have these additional properties
or Database Fields:

1.	a QUEST GIVER OBJECT
2.	a QUEST PROMPT OBJECT
3.	a QUEST TARGET OBJECT
4.	a QUEST RECEIVER OBJECT

The Quest Giver would be a 3D Animation Object of a character in the Game
World chosen at random from a Database Table full of possible 3D Animation
Objects. The Game Designers could edit this Database Table and add more charac-
ters to the table to add more variety to the system.

The Quest Prompt is a Text Object which the Quest Giver displays to the
player when the player approaches for the first time chosen at random from another
Database Table full of possible Text Objects. The Text Object would spell out the
player’s assignment to kill the Quest Target.

The Quest Target is 3D Animation Object of another character in the Game
World chosen at random from a Database Table full of possible targets or 3D
Animation Objects. Again the Game Designers could edit this Database Table and
add more characters to the table to add more variety to the system.

The Quest Receiver Object is the Player Object or player who was given the quest.
The Quest Giver and Quest Target would be chosen and generated in the Game

World by the Kill Quest Handler if one of these did not exist. When the Kill Quest
Handler responded to the Initial Reset Event or the Periodic Reset Event. And
placed both in two different Waypoints chosen at random from the set generated
earlier by the Quest Waypoints Object.

The Quest Giver would respond to the Object Entered Event, from the Player
Object, when the player approached it. And it would display the Text Object with
the player’s assignment.

The Quest Giver would also respond to the Object Dead Event, from the
Quest Target, when the player had killed the target. And it would replace its old
Secondary Proximity Event, Object Entered Event, in its Database Record, with
a new Secondary Event, a QUEST REWARD EVENT. That would be automati-
cally triggered when the player returned back to the Quest Giver. At which point the
Quest Giver would respond to the Quest Reward Event and reward the player for
completing the assignment.

The fifth part of the Procedurally Generated Quest System would require an
invisible Game Object or FIND QUEST HANDLER OBJECT which controls the
quest where the player has to find a special item. This would be similar to the Kill
Quest Handler. It will also have these additional properties or Database Fields in
its Database Record:

1.	a Quest Giver Object
2.	a Quest Prompt Object
3.	a QUEST LOST OBJECT
4.	a Quest Receiver Object

105LPmud Software Production Process

The difference is that the Quest Lost Object would be a 3D Model Object of
a special weapon, armour or item in the Game World chosen at random from a
Database Table full of possible special items or 3D Model Objects. Again the
Game Designers could edit this Database Table and add more special items to the
table to add more variety to the system.

The Quest Giver and Quest Lost Object would be chosen and generated in the
Game World by the Find Quest Handler if one of these did not exist. When the
Find Quest Handler responded to the Initial Reset Event or the Periodic Reset
Event. And placed both in two different Waypoints chosen at random from the set
generated earlier by the Quest Waypoints Object.

Again the Quest Giver would respond to the Object Entered Event, from the
Player Object, when the player approached it. And it would display the Text Object
with the player’s assignment.

The Quest Giver would also respond to the Object Moved Event, from the
Quaye Lost Object, to know when the player had found the special item and picked
it up. And it would replace its old Secondary Proximity Event, Object Entered
Event, in its Database Record, with a new Secondary Event, a Quest Reward
Event. That would be automatically triggered when the player returned back to the
Quest Giver. At which point the Quest Giver would respond to the Quest Reward
Event and reward the player for completing the assignment.

The sixth part of the Procedurally Generated Quest System would require an
invisible Game Object or ESCORT QUEST HANDLER OBJECT which con-
trols the quest where the player has to escort a special character in the Game World.
Again this would be similar to a Kill Quest Hander. It would also have these addi-
tional properties or Database Fields in its Database Record:

1.	a Quest Giver Object
2.	a Quest Prompt Object
3.	a Quest Target Object
4.	a Quest Spline Object
5.	a Quest Receiver Object

The difference will be that the Quest Target is 3D Animation Object of another
character in the Game World that moves along the Waypoints of the splines gener-
ated earlier by the Quest Splines Generator Object. The Quest Target will always
begin from the first Waypoint on the spline and move progressively forward to the
next Waypoint, until it reached the end of the spline.

And the Quest Spline Object that the Quest Target would move along will
be the spline chosen at random from a Database Table of splines or Quest Spline
Objects that was generated earlier.

Again the Quest Giver would respond to the Object Entered Event, from the
Player Object, to detect when the player approached it. And it would display the
Text Object with the player’s assignment.

The Quest Target would also respond to the Object Entered Event, from the
Player Object, to know when the player was approaching. And when to start mov-
ing from its current Waypoint along the spline to the next Waypoint. Until it reached

106 Event-Database Architecture for Computer Games

the last Waypoint at which point the Quest Target would generate a QUEST
COMPLETE EVENT.

The Quest Giver would respond to the Quest Complete Event, from the Quest
Target, to know when the player had escorted the target to the last Waypoint. And
again as with the other quests, it would replace its old Secondary Proximity Event,
Object Entered Event, in its Database Record, with a new Secondary Event,
a Quest Reward Event. That would be automatically triggered when the player
returned back to the Quest Giver. At which point the Quest Giver would respond
to the Quest Reward Event and reward the player for completing the assignment.

Finally, the Quest Giver would respond to the Object Dead Event, from the Quest
Target, to know when the target had been killed. And display a Text Object to the
player to inform them that they had failed the assignment. Note that the Quest Target
only moves to the next Waypoint along the spline when the player comes within close
proximity of it. So if the player abandons the Quest Target at any Waypoint, it will not
move to the next Waypoint. And the player will never be rewarded for completing the
quest. And the player will implicitly have failed the assignment.

1.4  STEP 4: LPmud DATA DESIGN

The next step in the Event-Database Production Process, after the technical design,
would be to create a data design.28 You can see the vision for data design in Figure 1.31.

This data design would be written by the Database Administrator. This defines
the language of the Event-Database Production Process. If there is a narrative in
a prior game design, this language should reflect that prior one. But if there is no
narrative because the game design is incomplete, then this defines the language of
the narrative of the Game World which is about to be built. This should been written

FIGURE 1.31  An example of a cover page for a data design to build a computer game
LPmud.

107LPmud Software Production Process

after consultation with the staff i.e. the Game Programmers, Game Artists, Game
Designers, Sound Designers and Game Testers.

This data design would include a description of all the Database Tables, Database
Records and Database Fields that were going to be in the Game Database of
LPmud. Each Record would require a special Field to act as an ID. This is known as
the Primary Key and should be the first Field in each Record.

Some of the Records, in the Database, would be required by the components of
the Event-Database Architecture. These would namely be the Records for the Host
Modules, such as the Physics Host, Graphics Host and Sounds Host. The rest of
the Records would be required by the game design, technical design and the staff.
These include the Records for Events and Game Objects, images, texts, 3D models,
sounds and so on.

For LPmud, over 40 Database Tables would be required. The first two Tables
would hold the properties of Events.

1.4.1 P rimary Events Table

The first Database Table would hold Primary Event Records. These would map a
Primary Key for a Primary Event to

•	 one or more Secondary Events
•	 a hexadecimal code that will act as a short form of that Primary Key in

certain situations, where you needed to save space.

This would include the archetypal Primary Events of the Event-Database
Architecture e.g.

Collision Event
End Event
Proximity Event
Initial Reset Event
Moved Event
Shutdown Event

This would include the custom Primary Events for LPmud e.g.

Heartbeat Event
Loaded Event
Periodic Reset Event
Unloaded Event

This would include the Database Records for these standard Events required by
the Game Controllers Host e.g.

Connect Event Record
Disconnect Event Record
Initial Reset Event Record
Moved Event Record

108 Event-Database Architecture for Computer Games

Pressed Event Record
Priority End Events Record
Primary Collision Event Record
Primary Proximity Event Record
Priority Events Record
Released Event Record
Stopped Event Record

You can see an example of this Database Table in Table 1.5.

1.4.2  Secondary Events Table

The next Database Table would hold Secondary Event Records. Each Record
would hold the properties of a Secondary Event. This would map a Primary Key for
a Secondary Event to

•	 the time delay after a Primary Event before that Event would be sent
•	 the game time it was due to be sent
•	 the Game Object that would receive it and respond with an Action
•	 the list of Game Objects which caused it
•	 the Priority Events Record, which described any priority that Event had

over other similar, or contradictory Events, when two or more Secondary
Events followed on from the same Primary Event

•	 a hexadecimal code that would act as a short form of that Primary Key in
certain situations, where you needed to save space.

This Table would include the archetypal Secondary Events of the Event-
Database Architecture e.g.

Secondary End Event.

This Table would include the custom Secondary Events for LPmud e.g.

Object Attacked Event
Object Dead Event

TABLE 1.5
Example of a Primary Events Table

Primary Event ID Secondary Event IDs Hex. Code.
Primary Initial Reset Event Master Object Initial Reset Event, Master Object

Periodic Reset
0002

Primary Heartbeat Event Master Object Heartbeat Event, Warrior
Heartbeat Event, Thief Heartbeat Event

0005

Primary End Event Warrior Pacified Event, Thief Dead Event 00F0

109LPmud Software Production Process

Object Destroyed Event
Object Dropped Event
Object Entered Event
Object Exited Event
Object Heard Event
Object Heartbeat Event
Object Initial Reset Event
Object Inventory Event
Object Looked Event
Object Moved Event
Object Pacified Event
Object Periodic Reset Event
Object Taken Event
Object Unused Event
Object Used Event

This Table would also include all of the Secondary Events used by the
Procedurally Generated Quest System i.e.

Quest Complete Event
Quest Splines Complete Event
Quest Reward Event

This Table and the previous Table would be used by the custom tools inside and
outside the Game World to test the game i.e.

Internal Database Host Query Custom Tool
Internal Events Host Custom Tool.
External Database Host Query Custom Tool
External Events Host Custom Tool

From inside the Game World, the Internal Database Host Query Custom Tool
would be used to query the location the player was in the Game World, for all visible and
invisible Game Objects. And the local Game Objects found there in turn would be used
to query this Database Table. To find the Secondary Events those Objects responded to.
And the Secondary Events in turn would be used to query the previous Database Table.
To find the Primary Events which generated those Secondary Events.

After the local Primary Events and Secondary Events had been iden-
tified, the Internal Events Host Custom Tool would then be used to send
those Primary Events and Secondary Events to Game Objects via the Events
Host and Object Host. To test what would happen when those Events were
being triggered by a player.

From outside the Game World, the External Database Host Query Custom
Tool would do a similar thing as the Internal Database Host Query Custom Tool.
Except that it would query the entire Database, not just one location in the Game
World, for any Game Objects whose Database Fields matched some criteria you

110 Event-Database Architecture for Computer Games

specified. This can either be a Field containing a specific value or one of a set of
values or a range of values. And it would then use the Game Objects found match-
ing the criteria to query this Table. To find the Secondary Events those Objects
responded to. And in turn use those Secondary Events to query the previous Table
to find out which Primary Events generated those Secondary Events.

After the Primary Events and Secondary Events had been identified, the
External Events Host Custom Tool would then be used outside of the Game World.
To send those Primary Events and Secondary Events to the Game Objects via the
Events Host and Objects Host. To test what would happen when those Events were
being triggered by a player.

You can see an example of this Database Table in Table 1.6.

1.4.3  Sound Speaker Secondary Events Table

The next Database Table would hold Sound Speaker Secondary Events Records.
These are very similar to Secondary Events Records. Except these would also map
a Primary Key for a Secondary Event to

•	 Sound Stream Records containing the sound streams that the Master
Sound Speaker Object should play when it received each Event.

You can see an example of this Database Table in Table 1.7.

TABLE 1.6
Example of a Secondary Events Table

Secondary Event ID Delay (Sec.) Game Time (Sec.) Game Object Causing Objects
Master Object Initial
Reset Event

0 1 Master Object None

Master Object
Periodic Reset
Event

0 200 Master Object None

Master Object
Heartbeat Event

0 258 Master Object None

Thief Dead Event 0 260 Thief Object Warrior 2D Player
Object

Thief Resurrect
Event

5 265 Thief Object Thief 2D Player
Object

Secondary Event ID Priority Events ID Hex. Code
Master Object Initial Reset Event None 0011

Master Object Periodic Reset Event None 0018

Master Object Heartbeat Event None 0021

Thief Dead Event Thief’s Death Priority Events 0022

Thief Resurrect Event None 0023

111LPmud Software Production Process

1.4.4 P riority Events Table

The next Database Table would hold Priority Events List Records. These would
hold all the set of mutually exclusive Secondary Events, which could follow on
from the same Primary Event. And this would hold the priority assigned to each
one, to determine the frequency with which it would be chosen to follow that
Primary Event, at the expense of the others. This priority is a percentage value. So
a Secondary Event with a priority of 50 has a 50% chance of following on. And an
Event with a priority of 30 has a 30% chance of following on. And one with a prior-
ity of 20 has a 20% chance, and so on and so on.

You can see an example of this Database Table in Table 1.8.

1.4.5 E vents History Table

The next Database Table would hold Events History Records. These would hold
the history of the chain of all the Primary and Secondary Events since the start of
the game. It would include the maximum number of different types of Events and
the maximum length of the history. Now the history of the chain of Events could
literally be a list of Primary Keys for those Events. But the length of these Primary
Keys can be very long. For example, one of the standard Primary Events is

Primary Initial Reset Event.

TABLE 1.7
Example of a Sound Speaker Secondary Events Table

Secondary Event ID Delay (Sec.) Game Time (Sec.) Game Object Causing Objects
Thief Dead Sound
Event

0 260 Master Sound
Speaker Object

Warrior 2D Player
Object

Thief Resurrect
Sound Event

5 265 Master Sound
Speaker Object

Thief 2D Player
Object

Secondary Event ID Priority Events ID Hex. Code Sound Stream ID
Thief Dead Sound Event Thief’s Death

Priority Events
0024 Thief Dead Sound

Thief Resurrect Sound Event None 0025 Thief Resurrect Sound

TABLE 1.8
Example of the Priority Events Table

List ID Secondary Event IDs Priorities (%)
Thief’s Death Priority Events Drop Money Event, Drop Jewellery Event,

Drop Special Artefact Event
50, 30, 20

112 Event-Database Architecture for Computer Games

This is 27 characters long. The Primary Keys of Events in this form would quickly
consume space reserved for the history.

A better way would be to store the history in the form of decimal or hexadecimal
numbers which map onto the real Primary Keys. A hexadecimal number of 4 char-
acters can represent a number from 0 to 65535 or 65536 Primary Keys. You would
then need another Database Table which maps these hexadecimal Primary Keys to
the real Primary Keys of Events. Fortunately, the Primary Events Table and the
Secondary Events Table already do that.

There are many factors which effect the size of the Events History Record. The
lesser the number of different types of Events you can have, the greater the number
of Events you can store in your history. And the greater the length of time you can
cover in that history. Before time runs out and the game has to end or the Game
World has to be reset. And you lose the advantages of having an Event History
Record. To recap, these would include

1.	allowing players or computers who join multiplayer games late to replay
all of the Events, since the beginning of the game, to synchronise
their local copy of the Game World with the rest of the copies on the
network

2.	allowing Game Objects to perform Actions in response to Events that
change depending on antecedent Events

3.	allowing Game Testers to diagnose steps needed to reproduce Bugs, critical
errors or Crashes

4.	allowing Game Programmers to diagnose the code executed to reproduce
Bugs, critical errors or Crashes

For example, if your game could have up to 256 Events, then you could fit the
ID of each Event into a space of 1 byte or two hexadecimal characters. And if you
reserved 100 megabytes of space for the history, then you could in theory keep a
history of

	 1024*1024*100 / 2 52,428,800() =

or 50 million Events. And if you assumed that two Events, a Primary and
Secondary Event, would take place during each Unit of game time,29 and each Unit
last 1 second, then you could keep a history for

	 52,428,800 / 2*60*60 7281.778() =

or 7282 hours. Before the game has to end or the Game World has to be reset.
If, on the other hand, your game could have up to 65,536 Events, then you could

fit the ID of each Event into a space of 2 bytes or four hexadecimal characters. And
if you again reserved the same amount of space for the history, then you could in
theory keep a history of

	 1024*1024*100 / 4 26,214,400() =

113LPmud Software Production Process

or 25 million Events. And if you again assumed that two Events would take place
during each Unit of game time, and each last 1 second, then you could keep a
history of

	 26,214,400 / 2*60*60 3640.889() =

or 3641 hours. Before the game has to end or the Game World has to be reset.
Now some may say it is highly unlikely you would make a game where only two

Events would occur in each Unit of game time. A more realistic amount would be
100 Events. But even if you allow for that, then you could still keep a history for

	 26,214,400 / 100*60*60 72.81778() =

or 72 hours.
Now some may say that the history of Events should include temporal or spacial

information. So you could tell the position of Game Objects in the Game World in
the history, when they responded to Secondary Events. For example, when you join
a multiplayer game, built with the Event-Database Architecture, and a Peer-to-
Peer Network Architecture, and replay all the Events which happened from the
beginning, at the end of the replay, you would need to know the current state and
position of all the Game Objects. To complete the synchronisation of your local
copy of the Game World with the other copies on the local network.

But adding temporal or spacial information to the history would greatly increase
its size. If, for example, you wanted to store the X, Y and Z positions of every Game
Object when it responded to a Secondary Event in the history, you would need 4
bytes to store each of these three positions. That is a total of 12 bytes on top of the 2
bytes needed to store the ID or Primary Key of each Event. This gives you a total of
14 bytes for each Secondary Event. Suppose you have 100 Events occurring in each
Unit of game time. And 50 were Secondary Events, taking up 14 bytes. And 50 were
Primary Events, taking up 2 bytes. This means that in each Unit, 800 bytes or 1600
hexadecimal characters were required to represent 100 Primary and Secondary
Events. And suppose you have 100 megabytes of space reserved for the history. That
means you can only keep

	 1024*1024*100 / 1600 / 100 6553,600() () =

or 6.5 million Events or

	 6553,600 / 100*60*60 18.204() =

or 18 hours of history.
On the other hand, some may say you do not need spacial information in the

history. If a player or computer were to join a multiplayer game late, then they just
have to replay the history of Events to date. All the while keeping track of all of the
Game Objects affected by these Events. And then, at the end of the replay, get the
spacial information i.e. the final position of all these Game Objects. And this can

114 Event-Database Architecture for Computer Games

come from the copies of the Game Database on the local computer network of those
already playing the game.

Furthermore, it is highly unlikely you would have 65,536 different types of Events
occurring in a game. Since you would have to give a name to each one. And these
names would become part of the language of the production process. A language
which had 65,536 words would be too much for anyone to learn. You would really
need to strike a balance between a high enough number of Events that gave you the
flexibility to cope with changes to an incomplete game design. And a number low
enough that it makes the language of the production process relatively quick and easy
to learn for new staff joining the process.

You can see an example of the Events History Table in Table 1.9.

1.4.6  2D Polygons Table

The next Database Table would hold 2D Graphics Object Records. These would
hold the shape of a polygon, which would be used to display the image of a 2D
Graphic Object. The shape may also either be used to define a bounding box around
an Object. Or it may be used to define the Collision boundary around an Object. Or
it may be used to set the Proximity boundary around the Object. The Record would
map a 2D Polygon ID to the list of the coordinates of the vertices, and the Normal
Vectors, of the polygon.

You can see an example of this Database Table in Table 1.10.

1.4.7  3D Models Table

The next Database Table would hold 3D Graphics Object Records. These would
hold the shape of a 3D model, which would be used to display a Graphics Object.
The model may also either be used to define the bounding box around an Object. Or
it may be used to define the shape of a Collision boundary around an Object. Or it
may be used to set the Proximity boundary around an Object. The Record would
map a 3D Model ID to the list of the coordinates of the vertices, and the Normal
Vectors, of each polygon in a model.

You can see an example of this Database Table in Table 1.11.

1.4.8 T extures Table

The next Database Table would hold Texture Graphics Object Records. Each
Record would hold the Texture (or 2D image), which would be used to colour a 2D

TABLE 1.9
Example of the Events History Table

List ID Max. Types of Events Max. Length History of Events
Events History 65,536 52,428,800 00020011001800050021

115LPmud Software Production Process

TABLE 1.10
Example of a 2D Polygons Table

2D Polygon ID 2D Vertices 2D Normals
Help Icon Boundary List of the vertices, which

make up the boundary around
the Help icon on the screen.

List of the Normal Vectors; one for
each side of the polygon.

Forest Outline Boundary List of the vertices, which
make up the outline of the
forest on the map of the
Game World, located about
its centre.

List of the Normal Vectors; one for
each side of the polygon.

Village Outline Boundary List of the vertices, which
make up the outline of the
village on the map of the
game, located about its
centre.

List of the Normal Vectors; one for
each side of the polygon.

Mountain Range Outline
Boundary

List of the vertices, which
make up the outline of the
mountain range on the map
of the Game World, located
about its centre.

List of the Normal Vectors; one for
each side of the polygon.

TABLE 1.11
Example of a 3D Models Table

3D Model ID 3D Vertices 3D Normals
Warrior Model List of the triangular vertices, which

make up the model of a Warrior,
located about its centre.

List of the Normal Vectors; one
for each polygon.

Thief Model List of the triangular vertices, which
make up the model of a Thief,
located about its centre.

List of the Normal Vectors; one
for each polygon.

Forcefield Boundary List of the triangular vertices, which
make up the boundary around the
model of a Forcefield, located about
its centre.

List of the Normal Vectors; one
for each polygon.

Small Bush Boundary List of the triangular vertices, which
make up the boundary around the
model of a small bush, located about
its centre.

List of the Normal Vectors; one
for each polygon.

Covered Pit Boundary List of the triangular vertices, which
make up the boundary around the
model of a covered pit, located about
its centre.

List of the Normal Vectors; one
for each polygon.

116 Event-Database Architecture for Computer Games

polygon or a 3D model. Some of the images would also be used to display 2D Game
Objects and others to display 3D Game Objects. The Record would map a Texture
ID to the width and height of an image, and a set of pixel colours in RGBA format.30

You can see an example of this Database Table in Table 1.12.

1.4.9 T exture Coordinates or UV Table

The next Database Table would hold Texture Coordinates Graphics Object
Records. Each Record would hold Texture coordinates. These would control the
region of a Texture that would be used to display a polygon of a 3D model, or a 2D
image. The Record would also be used by a Text Object to display words. It would
be used to get the region of each character, from an image which contained all the
characters of a font. The Record would map a Texture Coordinate ID to a list of the
coordinates of the vertices, on a 2D image.

You can see an example of this Database Table in Table 1.13.

TABLE 1.12
Example of a Textures Table

Texture ID Width Height Pixels (RGBA Format)
Warrior Texture 256 256 List of colours that

make up the image.

Thief Texture 256 256 List of colours.

Game Map Texture 1024 768 List of colours.

Italic Font Texture 512 128 List of colours.

Portal Texture 512 512 List of colours.

TABLE 1.13
Example of a UV Table

Texture Coordinate ID 2D Vertices
Warrior Texture Coordinates List of the triangular vertices, on a 2D image; one vertex per 3D

vertex in the model of the Warrior.

Thief Texture Coordinates List of the triangular vertices, on a 2D image; one vertex per 3D
vertex in the model of the Thief.

Game Map Texture Coordinates List of the rectangular vertices, on a 2D image; one vertex per
2D vertex in the polygon of the map of the Game World.

Help Icon Texture Coordinates List of the rectangular vertices, on a 2D image. These mark the
4 points around the Help icon, in the image of all the icons
used in the game.

Italic-A Texture Coordinates List of the rectangular vertices on a 2D image. These mark the 4
points around the character ‘A’, in the image of the Italic font.

Portal Texture Coordinates List of the triangular vertices, on a 2D image of an elliptical
portal showing the view of a remote part of the Game World.

117LPmud Software Production Process

1.4.10 M aterials Table

The next Database Table would hold Materials Graphics Object Records.
These would hold the properties of Materials. These would control how one or
more Textures are rendered on a polygon of a 3D model, or a 2D image. A polygon
may be rendered with a single Texture. Or it may be rendered using a composite
of Textures. These Textures may be tiled together, side by side, using some for-
mula. Or these may be blended on top of each other, using another formula. Or
the pixels of the Textures may be used to generate vertices or adjust the position
of vertices or generate Normal Vectors on a polygon or model, using yet another
formula. Or these Normal Vectors may in turn change the way light is reflected
off the surface of a polygon.

The rendering of Textures will be done by Graphic Shaders.31 This is machine
code used to programme a Graphics Processor that renders shapes on the screen or
into another Texture. There are several Shaders involved in executing the five main
steps of the process of Hardware Rendering with a Graphics Processor i.e.

1.	Vertex Shader32

2.	Tessellation
3.	Geometry Shader33

4.	Rasterisation
5.	Fragment Shader.34

The Vertex Graphic Shader or Vertex Shader is used to perform the projection
of the vertices of the polygons of 2D images or 3D models, through a camera, into
Normalised space (an area which is 1 × 1 × 1) and then onto screen space (i.e. the
computer screen). And it is used to set the amount of lighting at each vertex.

The Tessellation step is mandatory. It breaks up the polygons of 2D images or 3D
models produced by the Vertex Shader into smaller polygons. To make them look
like higher resolution polygons or models and thus give them a smoother appearance.
Typically, this step is hard coded and cannot be controlled with Graphic Shaders.

The Geometry Graphic Shader or Geometry Shader is optional. It is used either
to take the 2D or 3D primitives from the Vertex Shader and produce another primi-
tive, adding or removing vertices. Or for rendering multiple images of the same
primitive, at once, to the same target (i.e. computer screen or Texture). Or for feeding
back information about the vertices of the primitives produced by the Vertex Shader,
to later steps.

The Rasterisation step is mandatory. It projects the pixels of the Textures
of the polygons of the 2D image or 3D models, onto the screen or another
Texture. Typically, this step is hard coded and cannot be controlled with Graphic
Shaders.

The Fragment Graphic Shader or Fragment Shader is optional. It parses the pix-
els of the Textures of the polygons of 2D images or 3D models, after Rasterisation.
And it can change the depth and colour of the pixels depending on some kind of
formula. And it can also discard pixels and stop these being rendered dependent on
another formula.

118 Event-Database Architecture for Computer Games

A Material can have one or more Tags or words which identify its properties on
the surface of a polygon not just for rendering graphics but also for simulating phys-
ics. For example, a Tag may indicate that a surface is liquid. This means that in terms
of rendering its graphics, the graphics should show light reflecting off the surface,
and refraction of light passing through the surface. And in terms of physics, if the
players walk across the surface, then their character will sink down into it.

You can see an example of a Materials Table in Table 1.14.

1.4.11 P rojected Shapes Table

The next Database Table would hold Projected Shapes Records. These
would hold the properties of Projected Shapes. These would be the vertices
of the bounding box around 2D Graphic Objects or 3D Graphics Objects,
on a Texture or computer screen, after these had been projected through the
2D Camera Objects or 3D Camera Objects, in the Game World. The Record
would map a Projection ID to a list of the projected vertices on a Texture or
the screen.

TABLE 1.14
Example of a Materials Table

Material ID List of Texture IDs
Warrior Material List of Textures that will be used to render the Warrior’s face, hair, arms,

hand, legs, feet and dress.

Thief Material List of Textures that will be used to render the Thief’s face, hair, arms,
hand, legs, feet and dress.

Game Map Material List of Textures that will be tiled next to each other to show a map of the
Game World.

Help Icon Material List of animated Frames that will be used to play back an animation of a
rotating Help Icon.

Italic-A Material List of Textures that will render the character ‘A’, in the image of the
Italic font.

Material ID List of Tags Vertex Shader Geometry Shader Fragment Shader
Warrior Material NPC Vertex Shader to

render Warrior.
Geometry Shader to
render Warrior.

Fragment Shader to
render Warrior.

Thief Material NPC Vertex Shader to
render Thief.

Geometry Shader to
render Thief.

Fragment Shader to
render Thief.

Game Map
Material

Map Vertex Shader to
render map.

Geometry Shader to
render map.

Fragment Shader to
render map.

Help Icon
Material

Icon Vertex Shader to
render an
animated icon.

Geometry Shader to
render an animated
icon.

Fragment Shader to
render an
animated icon

Italic-A Material Font Vertex Shader to
render a character
in a font.

Geometry Shader to
render a character
in a font.

Fragment Shader to
render a character
in a font.

119LPmud Software Production Process

The Record would also include the Graphic Object ID of the Object whose
bounding box was projected onto the screen. And the Record would include a Device
Group ID that would contain the device group name, IP Address, Username,
Password and Authentication Token of the Game Client or the player that would
own the Database Record and would see those projections, in a multiplayer game
(Table 1.15).

TABLE 1.15
Example of a Projected Shapes Table

Projection ID Projected Vertices Graphic Object ID
Warrior Projection List of the projected vertices of the

bounding box of the Warrior.
Warrior 3D Player Object

Thief Projection List of the projected vertices of the
bounding box of the Thief.

Thief 3D Player Object

Game Map Projection List of the projected vertices of the
bounding box of the map of the Game
World.

Game Map Object

Help Icon Projection List of the projected vertices of the
bounding box of the icon.

Help Icon Object

Forest Label Projection List of the projected vertices for the
bounding box of the characters
labelling the forest, on the map of the
game.

Forest Label Object

Village Label Projection List of the projected vertices for the
bounding box of the characters labelling
the village, on the map of the game.

Village Label Object

Projection ID Materials Device Group ID
Warrior Projection Warrior Materials ID Joystick1:192.168.0.1:Player1:PassP112

34:34&QA>65R,3I087-
S4#$Q,C,T”@``

Thief Projection Thief Materials ID Joystick1:192.168.0.1:Player1:PassP112
34:34&QA>65R,3I087-
S4#$Q,C,T”@``

Game Map Projection Game Map Materials ID Joystick1:192.168.0.1:Player1:PassP112
34:34&QA>65R,3I087-
S4#$Q,C,T”@``

Help Icon Projection Icon Materials ID Joystick1:192.168.0.1:Player1:PassP112
34:34&QA>65R,3I087-
S4#$Q,C,T”@``

Forest Label Projection Text Materials ID Joystick1:192.168.0.1:Player1:PassP112
34:34&QA>65R,3I087-
S4#$Q,C,T”@``

Village Label
Projection

Text Materials ID Joystick1:192.168.0.1:Player1:PassP112
34:34&QA>65R,3I087-
S4#$Q,C,T”@``

120 Event-Database Architecture for Computer Games

1.4.12  Sound Microphone Table

The next Database Table would hold Sound Microphone Records. These would hold a
sound microphone from which the Game World could be heard. Each Record would map
a Sound Microphone ID to a Game Object the microphone was attached to and an off-
set around that Game Object from which sounds would be heard. And a Device Group
ID that would contain the device group name, IP Address, Username, Password and
Authentication Token of the Game Client or the player that would own the Database
Record and would hear the sound through the sound microphone.

You can see an example of this Database Table in Table 1.16.

1.4.13  Sound Stream Table

The next Database Table would hold Sound Stream Records. These would hold
a sound, or a piece of music, that would be played during the game. Each Record
would map a Sound Stream ID to an encoded sound stream, its duration, its fre-
quency, its channel, its left and right stereo volumes, its priority, its End Event, the
Game Object whose locality the sound was attached to, the radius around that local-
ity where the sound would be heard.

You can see an example of a Sound Stream Table in Table 1.17.

1.4.14 A nimated Vertices Table

The next Database Table would hold Animated Vertices Graphics Object
Records. These would be used to hold the properties of ANIMATED VERTICES.
Each would map an ANIMATION ID to a list of the coordinates of the vertices that
changed, between each Frame, of an animated 2D polygon or 3D model. It would

TABLE 1.16
Example of a Sound Microphone Table

Sound Microphone ID Object ID Offset X Offset Y Offset Z
Warrior Object Microphone Warrior Player Object 0 0 0

Thief Object Microphone Thief Player Object 10 20 −10

Mage Object Microphone Mage Player Object −10 30 −10

Cleric Object Microphone Cleric Player Object 0 0 10

Sound Microphone ID Device Group ID
Warrior Object Microphone Joystick1:192.168.0.1:Player1:PassP11234:34&QA>65R,

3I087-S4#$Q,C,T”@``

Thief Object Microphone Keyboard1:192.168.0.1:Player2:PassP21234:34&QA>65R,
CI087-S4#(Q,C,T”@``

Mage Object Microphone Joystick2:192.168.0.2:Player3:PassP35678:34&QA>65R,
SI087-S4#,U-C<X”@``

Cleric Object Microphone Keyboard2:192.168.0.2:Player4:PassP45678:34&QA>
65R-#I087-S4#0U-C<X”@``

121LPmud Software Production Process

include the size of each set of changes. It would also include the rate at which the
Frames would be displayed, the length of the animation in seconds and how much
time had elapsed since the animation began.

To animate a model, the list of the changed vertices would be divided up into
several sections, depending on the number of Frames in the animation. Each section
would hold the vertices that have changed, between each Frame. The size of each
section would depend on the number of vertices that changed between each Frame.

Beginning with the 2D polygon or 3D model in its initial pose, each set of changes
would then be applied to the current Frame, to generate the next Frame, in the ani-
mation sequence. Each sequence would be created so that it formed one complete
cycle. Consequently, the first Frame and the last Frame of the animation would be
exactly the same. And the 2D polygon or 3D model could be easily returned to its
initial pose, if the animation were stopped in the middle of the sequence. This could
be done by simply completing the sequence.

You can see an example of this Database Table in Table 1.18.

1.4.15 G ame Time Table

The next Database Table would hold Game Time Records. Each Record would
hold the Unit of game time with which the game would operate. This would also hold
how much time had elapsed since the start of the game, and when the game began.
The Record would map a GAME TIME ID to these three times. It could also be
used to keep track of other timed Events as well.

For example, it is used to hold the time at which the players entered and left dif-
ferent stages or levels or parts of the Game World. It could be used to time when a
character appeared in the Game World and disappeared. It could be used to hold the
time at which the player started at an arbitrary point A and ended at another point B.

You can see an example of this Database Table in Table 1.19.

TABLE 1.17
Example of a Sound Stream Table

Sound Stream ID Encoded Sound (PCM format) Duration (Sec.) Frequency (kHz)
Funeral March
Music

Sound stream of the music. 180 40

Help Icon Sound Sound stream of a voice asking,
‘How may I help you?’

3 40

Sound ID Channel Left Vol. Right Vol. Priority
Funeral March Music 1 7 7 2

Help Icon Sound 2 8 8 1

Sound Stream ID End Event ID Object ID Sound Radius
Funeral March Music End Funeral March Event None 0

Help Icon Sound End Icon Sound Event Warrior’s Cursor Object 4196

122 Event-Database Architecture for Computer Games

1.4.16 D elayed Events Table

The next Database Table would hold Delayed Events List Records. Each Record
would list all the Secondary Events that were waiting to be sent, to a Game Object,
after the occurrence of a Primary Event. It would be used by the Events Host, to

TABLE 1.18
Example of an Animated Vertices Table

Animation ID Animated Vertices Frame Sizes
Warrior’s Death
Animation

List of the changed vertices, and the position
or index of each vertex, in the vertices of
the animated skeleton of a 3D model.

List of the number of
vertices changed
between each Frame, for
Frames–300.

Thief’s Death Animation List of the changed vertices, and the position
or index of each vertex, in the vertices of
the animated skeleton of a 3D model.

List of the number of
vertices changed
between each Frame, for
Frames 1–300.

2D Icon Crossbow
Animation

List of the changed vertices, and the position
or index of each vertex in the vertices of an
animation of a polygon of a crossbow being
fired, shown on a menu in a shop that sells
crossbows.

List of the number of
vertices changed
between each Frame, for
Frames 1–120.

Animation ID
Animation Rate

(Frames per sec.)
Animation

Length (Sec.)
Animation

Elapsed (Sec.)
Warrior’s Death Animation 60 5 0

Thief’s Death Animation 60 5 2.3

2D Icon Crossbow Animation 60 2 0

TABLE 1.19
Example of a Game Time Table

Game Time ID
Unit Time

(Secs.)
Total Time

(Secs.)
Start Time

(Secs.)
End Time
(Secs.)

Overall Time 0.02 600.02 0 600.02

Mountain domain 0.02 240.01 240.1 480.1

Sun alley domain 0.02 60.1 480.1 540.1

Forest domain 0.02 60.1 540.1 600.02

Giant lair domain 0.02 0 – –

Seashore domain 0.02 0 – –

Mines domain 0.02 0 – –

Maze domain 0.02 0 – –

Village domain 0.02 120 0 120.1

Adventurer’s guild domain 0.02 120 120.1 240.1

123LPmud Software Production Process

keep track of Secondary Events with time delays. The Record would map a List ID
to a list of Secondary Events.

You can see an example of this Database Table in Table 1.20.

1.4.17 R esidents or Loaded Records Table

The next Database Table would hold Residents List Records. Each Record would
hold the properties of the Residents List. This would list the Records of the Game
Database that were currently residing in the computer memory. The resident Records
would be ordered in the list. So that the latest addition, to the memory, would be at
the beginning of the list. And the oldest addition would be at the end of the list.

The Master Object would use this list to tell when a new Game Object and
its Game Object Record had been loaded into memory. And therefore the Game
Object should receive the Object Loaded Event.

The Record would map a List ID to a list of the Primary Keys of the resident
Records, and the maximum length of this list. Once this maximum was reached,
some of the Records residing in the computer memory would be unloaded using
some suitable steps or algorithm.

You can see an example of this Database Table in Table 1.21.

1.4.18 A bsents or Unloaded Records Table

The next Database Table would hold Absents List Records. Each Record would
hold the properties of the Absents List. This list would indicate the Records of the
Game Database that had been temporarily removed from the computer memory, to
make space. That may be loaded back into computer memory, later on, from the stor-
age media the Game Database was stored on, to a temporary location in computer
memory. When something tries to access that Database Record again.

TABLE 1.20
Example of a Delayed Events Table

List ID Secondary Event IDs
Delayed Events List Master Periodic Reset Event, Master

Heartbeat Event, Thief Resurrect Event.

TABLE 1.21
Example of a Loaded Records Table

List ID Resident IDs Max Length
Residents List List of all the Records currently

residing in the computer memory.
32,768

124 Event-Database Architecture for Computer Games

The absent Records would be ordered in the list. So that the latest Record,
removed from the memory, would be at the beginning of the list. And the oldest
Record, removed from the memory, would be at the end of it.

The Master Object would use this list to tell when an old Game Object had
been destroyed and its Game Object Record had been removed from memory. And
therefore that Game Object should receive the Object Unloaded Event.

The Record, of the Absents List, would map a List ID to a list of the Primary
Keys of the absent Records. You can see an example of this Database Table in
Table 1.22.

1.4.19 O bjects Loaded Table

The next Database Table would hold Objects List Records. Each Record would
list all the Game Objects that would be loaded into the computer memory, by the
Objects Host. The order of the Game Objects, in the list, would reflect the order in
which these would be loaded into the memory. The first Object loaded would be at
the beginning of the list, and the last Object would be at the end of it. The Record
would map a List ID to a list of Game Objects.

This Table would also hold the STAGE OBJECTS LIST RECORDS. These
would list all the Game Objects and other Database Records which should be loaded
in each part or level in the Game World. If a decision were made to limit, the number
of Game Objects loaded in each part to conserve space in computer memory.

You can see an example of this Database Table in Table 1.23.

TABLE 1.22
Example of an Unloaded Records Table

List ID Absent IDs Max Length
Absents List List of all the Records currently

absent from the computer memory.
65,536

TABLE 1.23
Example of Objects Loaded Table

List ID Object IDs
Objects List List of all the Records holding the properties of Game Objects that

currently, or were going to be, residing in the computer memory

Stage Objects List 1 List of all the Records of Game Objects that should be loaded in part 1 of
the Game World

Stage Objects List 2 List of all the Records of Game Objects that should be loaded in part 2 of
the Game World

Stage Objects List 3 List of all the Records of Game Objects that should be loaded in part 3 of
the Game World

125LPmud Software Production Process

1.4.20  2D Graphics Lists Table

The next Database Table would hold Graphics List Records. But each Record
would hold only list the 2D Game Objects, in a Game World, that would be dis-
played on the computer screen. These would include items lying around, characters,
creatures, buildings, other structures or locations, as well as texts, images, icons etc.

You can see an example of the 2D Graphics List Table in Table 1.24.

1.4.21  3D Graphics Lists Table

The next Database Table would hold Graphics List Records. But each Record
would only hold a list of the 3D Game Objects that would be displayed in the Game
World. The Record would map a List ID to a list of 3D Objects.

You can see an example of this Database Table in Table 1.25.

1.4.22 P rojected Lists Table

The next Database Table would hold Projected List Records. Each Record would
map a List ID to a list of projections of 2D Graphic Objects, through a 2D Camera
Object, in a 2D Game World, onto a Texture or the screen. It would also include the
projections of 3D Graphic Objects, through a 3D Camera Object, in a 3D Game
World. And the Record would include a Device Group ID that would contain the
device group name, IP Address, Username, Password and Authentication Token of
the Game Client or the player that would own the Database Record and would see
those projections, in a multiplayer game.

You can see an example of this Database Table in Table 1.26.

TABLE 1.24
Example of a 2D Graphics List Table

List ID Object IDs
2D Graphics List Warrior’s Health Bar Object, Thief’s Health Bar Object,

Warrior’s Label Text Object, Thief’s Label Text Object,
Warrior’s Messages Text Object, Thief’s Messages Text Object.

TABLE 1.25
Example of 3D Graphics List Table

List ID Object IDs
3D Graphics List 1 Warrior’s Player Object, Thief’s Player Object, Forest Sector Object, Forest

Tree Object 1, Forest Tree Object 2, Forest Tree Object 3, Small Bush
Object 1, Small Bush Object 2, Large Boulder Object, Sky Object.

3D Graphics List 2 Game Logo Object.

126 Event-Database Architecture for Computer Games

1.4.23  Sounds List Table

The next Database Table would hold Sounds Waiting List Records and the Sounds
Playing List Records. Each Record would list the sounds which were waiting to be
played back or were being played. The Record would map a List ID to a list of music
and sound effects.

You can see an example of this Database Table in Table 1.27.

1.4.24  2D Physics Lists Table

The next Database Table would hold Physics List Records. Each Record would only
list the 2D Game Objects whose position, speed and acceleration would be updated
by the Physics Host. The Record would map a List ID to a list of Invisible 2D Point

TABLE 1.26
Example of Projected Lists Table

List ID Projection IDs
Projected List Warrior 3D Camera Object Warrior Projection, Thief Projection, Forest Sector

Projection, Forest Tree 1 Projection, Forest Tree 2
Projection, Forest Tree 3 Projection, Small Bush 1
Projection, Small Bush 2 Projection, Sky Projection,
Warrior’s Health Bar Projection, Thief’s Health Bar
Projection, Warrior’s Label Projection, Thief’s Label
Projection, Warrior’s Messages Projection, Thief’s
Messages Projection.

Projected List Warrior Orthographic Top
View Camera Object

Warrior Projection, Thief Projection, Forest Sector
Projection, Forest Tree 1 Projection, Forest Tree 2
Projection, Forest Tree 3 Projection, Small Bush 1
Projection, Small Bush 2 Projection, Warrior’s Health
Bar Projection, Thief’s Health Bar Projection, Warrior’s
Label Projection, Thief’s Label Projection, Warrior’s
Messages Projection, Thief’s Messages Projection.

List ID Device Group ID
Projected List Warrior 3D Camera Object Keyboard1:192.168.0.1:Player2:PassP21234:34&QA

>65R,CI087-S4#(Q,C,T”@``

Projected List Warrior Orthographic Top
View Camera Object

Keyboard1:192.168.0.1:Player2:PassP21234:34&QA
>65R,CI087-S4#(Q,C,T”@``

TABLE 1.27
Example of a Sound Lists Table

List ID Sound IDs
Sound Waiting List Siegfried’s Funeral March Music, Help Icon Sound

Sound Playing List Explosion Sound, Player Dying Sound

127LPmud Software Production Process

Objects. Besides 2D Point Objects, the list may include any other Game Object that
was derived from an Invisible 2D Point Object. So long as it had all the properties that
a 2D Point Object had, that Object could be updated by the Physics Host.

The physics model of the Physics Host would be simple Newtonian Physics includ-
ing the 3 laws. A Game Object at rest will remain at rest or in motion will remain
in motion, unless acted on by an external force. The acceleration of a Game Object
is directly proportional to the force acting upon it and inversely proportional to its
mass. For every action there is an equal and opposite reaction. The Game Objects
could generate the forces (i.e. acceleration) acting on other Objects at any time for
any reason determined by the game design. The Physics Host would resolve the
forces generated depending on which forces were part of its software model of the
physical Game World (e.g. Friction, Gravity and reactive forces caused by collision).

You can see an example of this Database Table in Table 1.28.

1.4.25  3D Physics Lists Table

The next Database Table would hold Physics List Records. Each Record would list
only the 3D Game Objects whose position, speed and acceleration would be updated
by the Physics Host. The Record would map a List ID to a list of Invisible 3D Point
Objects. As with the 2D Objects, this list may include other Game Objects besides
Invisible 3D Point Objects. So long as a Game Object had all the properties of an
Invisible 3D Point Object, it could be updated by the Physics Host.

You can see an example of this Database Table in Table 1.29.

1.4.26  2D Camera Lists Table

The next Database Table would hold Camera List Records. Each Record would
hold the properties of a 2D Camera List. This would list the 2D cameras whose
view of the Game World would be displayed, on the computer screen or a Texture.

TABLE 1.28
Example of a 2D Physics Lists Table

List ID 2D Point Object IDs
2D Physics List Warrior’s Health Bar Object, Thief’s Health Bar Object.

TABLE 1.29
Example of a 3D Physics Lists Table

List ID 3D Point Object IDs
3D Physics List Warrior’s Player Object, Thief’s Player Object, Forest Sector Object, Forest

Tree Object 1, Forest Tree Object 2, Forest Tree Object 3, Small Bush
Object 1, Small Bush Object 2, Large Boulder Object, Sky Object.

128 Event-Database Architecture for Computer Games

This would include the view of any cameras showing an Orthographic Projection,
Isometric Projection, Chromatic Projection, Audio Projection or Textual
Projection of the Game World. The Record would map a List ID to a list of 2D
Camera Objects, and a Device Group ID that would contain the device group
name, IP Address, Username, Password and Authentication Token of the Game
Client or the player that would own the Database Record, and would see the Game
World through those Camera Objects, in a multiplayer game.

You can see an example of this Database Table in Table 1.30.

1.4.27  3D Camera Lists Table

The next Database Table would hold Camera List Records. Each Record would
hold the properties of a 3D Camera List. This would list the cameras whose view, of
the 3D Game World, would be projected onto the computer screen, or a Texture. This
would include the view of any cameras showing an Audio Projection or Perspective
Projection of the Game World. The Record would map a List ID to a list of 3D
Camera Objects, and a Device Group ID that would contain the device group
name, IP Address, Username, Password and Authentication Token of the Game
Client or the player that would own the Database Record and would see the Game
World through those Camera Objects, in a multiplayer game.

You can see an example of this Database Table in Table 1.31.

TABLE 1.30
Example of a 2D Camera Lists Table

List ID 2D Camera Object IDs
2D Cameras List Warrior Orthographic Top View Camera Object, Thief Orthographic Side

View Camera Object, Mage Orthographic Front View Camera Object,
Cleric Isometric Camera Object, Druid Chromatic Camera Object, Ranger
2D Audio Camera Object, Necromancer Textual Camera Object.

List ID Device Group ID
2D Cameras List Keyboard1:192.168.0.1:Player2:PassP21234:34&QA>65R,

CI087-S4#(Q,C,T”@``

TABLE 1.31
Example of 3D Camera Lists Table

List ID 3D Camera Object IDs
3D Cameras List Game Logo Camera Object, Rogue 3D Audio Camera

Object, Paladin Perspective Camera Object.

List ID Device Group ID
3D Cameras List Keyboard1:192.168.0.1:Player2:PassP21234:34&QA

>65R,CI087-S4#(Q,C,T”@``

129LPmud Software Production Process

1.4.28 D evice Group Table

The next Database Table would hold Device Group Records. Each Record would
hold the properties of a Game Controller, or a group of analogue devices and digi-
tal devices on a Game Controller. It would map a Device Group ID to the type of
Game Controller the devices belonged to, and a Game Object, whose properties
(e.g. Position) would be updated when the Game Controller was manipulated.

You can see an example of this Database Table in Table 1.32.

1.4.29 D evice Sequence Primary Events Table

The next Database Table would be used by the Master Player Object. It would hold
Device Sequence Primary Events Records. Each Record would hold the single
word for a single analogue device or digital device, or sequence of words for a group
of devices on a Game Controller. The use of which, by the player, constituted an
imperative command or Action to be performed by the player’s character. It would
map a Command ID to a sequence of devices for a command, and the Primary
Event that should be sent when that sequence was detected in the Digital History
Field or Analogue History Field of a 2D or 3D Player Object.

You can see an example of this Database Table in Table 1.33.

1.4.30 T ext Localisations Table

The next Database Table would hold Text Localisation Records. Each Record
would hold the text that would be displayed at different stages of the game. These
would include the names of items, on various menus of the User Interface, the title
of each stage, the names of Game Objects, the descriptions of features of the game
and so on. It would map a TEXT ID to the words which would be displayed on

TABLE 1.32
Example of a Device Group Table

Device Group ID Controller Type Object ID
Joystick1:192.168.0.1:Player1:
PassP11234:34&QA>65R,
3I087-S4#$Q,C,T”@``

Standard Game Controller Warrior Player Object

Keyboard1:192.168.0.1:Player2:
PassP21234:34&QA>65R,
CI087-S4#(Q,C,T”@``

Professional Keyboard Thief Player Object

Joystick2:192.168.0.2:Player3:
PassP35678:34&QA>65R,
SI087-S4#,U-C<X”@``

Advanced Game Controller Mage Player Object

Keyboard2:192.168.0.2:Player4:
PassP45678:34&QA>65R-
#I087-S4#0U-C<X”@``

Ergonomic Keyboard Cleric Player Object

130 Event-Database Architecture for Computer Games

the different screens, or at various locations in the Game World. The text in this
Database Table would be changed to adapt the game to the local regional language
where the game was being played.

You can see an example of this Database Table in Table 1.34.

TABLE 1.33
Example of a Game Controller Primary Events Table

Command ID Device Sequence Primary Event IDs
Forwards Command W Forwards Command Event

Backwards Command S Backwards Command Event

Turn Left Command A Turn Left Command Event

Turn Right Command D Turn Right Command Event

Jump Up Command SPACE Jump Up Command Event

Jump Down Command C Jump Down Command Event

Look Command L Look Command Event

Get Command T Get Command Event

Drop Command Q Drop Command Event

Give Command G Give Command Event

Wield Command U Wield Command Event

Wear Command J Wear Command Event

Remove Command E Remove Command Event

Say Command TY Say Command Event

Tell Command TT Tell Command Event

Shout Command TS Shout Command Event

Kill Command K Kill Command Event

Resurrect Command X Resurrect Command Event

Quit Command Q Quit Command Event

TABLE 1.34
Example of a Text Localisations Table

Text ID English French Spanish
Nobility Title Wicked Baron Méchant Baron barón malvado

Serf Title Meek Serf Serf débonnaire siervo manso

Village Title Teversham Teversham Teversham

Forest Title Dark Forest Forêt sombre bosque oscuro

Help Option Title Help Aide ayuda

Warrior Title Conan the Barbarian Conan le Barbare Conan el Bárbaro

Thief Title Ali Baba the Thief Ali Baba le voleur Alí Babá el ladrón

Mage Title Merlin the Magician Merlin le magicien Merlín el Mago

Cleric Title Luther the Priest Luther le prêtre Lutero el Sacerdote

131LPmud Software Production Process

1.4.31 E rrors Table

The next Database Table would hold Error Records. Each Record would hold the text
that would be displayed when an error occurred. Some of these texts would be displayed
by the Central Host, when an error occurred with a Host Module, before, during or
after a game. And the rest would be displayed by the Game Objects, when an error
occurred during a game. These errors would be similar to the other text that could be
displayed in the menus or the Game World. Except, some may not even appear on the
screen, due to errors with the Host Modules. The Record would map a Text ID to words
either displayed on screen or written into a computer file which kept a log of the errors.

You can see an example of this Database Table in Table 1.35.

1.4.32 I nvisible 2D Point Objects Table

The next Database Table would hold Point Object Records. Each Record would
be used to hold the properties of an Invisible 2D Point Object. The Record would
map an Object ID to the mass of a point, its position in a 2D Game World, its speed
and its acceleration. The Record would include its orientation (i.e. the angle of rota-
tion about its centre), its rotational speed and its rotational acceleration. The Record
would also include its Collision boundary, its Proximity boundary, its Collision and
Proximity Events. And the Record would include the Object Initial Reset Event
and the Object Destroyed Event of the 2D point.

When a 2D Point Object, or any other Game Object, had a mass of zero that
would mean it was very heavy. So heavy that the force of any impact was negligible,
and it would not move as a result of a collision with another Object.

Some of the Game Objects would be created outside of the Game World by the
staff. But others would be created inside the Game World by the highest level players
or Wizards. Therefore space should be reserved in this Database Table and other
similar Tables for the Wizards to add their own Game Objects. The difference in the
Objects created by the staff and those created by the Wizards would be reflected by
the following Database Fields in this and subsequent Database Tables:

Game Object Code Field
Owner Field

The Game Object Code Field would contain the custom code for the Game Object
written by a Wizards who created the Object in the Game World, using the LPC Custom

TABLE 1.35
Example of a Errors Table

Text ID Text
No memory No more space available in the memory for Database.

No sound No resources available on computer hardware to play sounds.

No Game Server No connection to remote Game Server.

132 Event-Database Architecture for Computer Games

Tool. And the Owner Field would contain the name of that Wizard. Only the owner of
a Game Object would be able to edit its properties and its behaviour.

This behaviour would be controlled by the pseudo machine code instructions or
LPC Code which was translated or ‘compiled’ from a file written in the LPC pro-
gramming language by the Wizard. This would control the Actions of that Game
Object in response to Secondary Events. These instructions would be executed by
the Objects Host using a Virtual Machine which can interpret LPC code.

However, if the Game Object were created from outside of the game, then the
Game Object Code Field would hold the real machine code instructions, trans-
lated or ‘compiled’ from a file written in the same programming language used to
build the Host Modules. And this would control the Actions of each Game Object
in response to Secondary Events. These instructions would be executed by the
Objects Host using the Central Processor of a real machine.

You can see an example of this Database Table in Table 1.36.

TABLE 1.36
Example of an Invisible 2D Point Objects Table

Object ID
Game

Object Code Owner Mass X Y X Speed Y Speed
Undiscovered Map Area 1 Map Code 1 Staff 1 90 51 0 0

Undiscovered Map Area 2 Map Code 2 Staff 1 181 195 0 0

Undiscovered Map Area 3 Map Code 3 Staff 1 461 235 0 0

Object ID X Accel. Y Accel.
Angular

Position (Deg.)
Angular Speed

(Deg./Sec.)

Angular
Accel. (Deg./

Sec./Sec.)
Undiscovered Map Area 1 0 0 0 0 0

Undiscovered Map Area 2 0 0 0 0 0

Undiscovered Map Area 3 0 0 0 0 0

Object ID
Collision

Boundary ID
Proximity

Boundary ID Collision Event ID
Undiscovered Map Area 1 None Village Outline

Boundary
None

Undiscovered Map Area 2 None Forest Outline
Boundary

None

Undiscovered Map Area 3 None Mountain Range
Outline Boundary

None

Object ID
Proximity
Event ID

Object Initial Reset
Event ID

Object Destroyed
Event ID

Undiscovered Map Area 1 Enter Village
Event

Unknown Map Area
Initial Reset Event 1

Unknown Map Area
Destroyed Event 1

Undiscovered Map Area 2 Enter Forest
Event

Unknown Map Area
Initial Reset Event 2

Unknown Map Area
Destroyed Event 2

Undiscovered Map Area 3 Enter Mountain
Range Event

Unknown Map Area
Initial Reset Event 3

Unknown Map Area
Destroyed Event 3

133LPmud Software Production Process

1.4.33 I nvisible 3D Point Objects Table

The next Database Table would hold Point Object Records. Each Record would
be used to hold the properties of an Invisible 3D Point Object. The Record would
map an Object ID to the mass of a point, its position in a 3D Game World, its speed
and its acceleration. The orientation of the point (i.e. the angle of rotation about
its local X, Y and Z axes), its X, Y and Z angular speeds, its X, Y and Z angular
accelerations would be included in the Record. The Record would also include the
Collision boundary, the Proximity boundary, the Collision and Proximity Events
of the point. And the Record would contain the Secondary Events that would be
received, by the Game Object, when that Record was loaded into or removed from
the computer memory.

This Table would include all of the invisible Game Objects that were used by the
Procedurally Generated Quest System e.g.

Quest Marker Objects
Quest Spline Object
Quest Splines Generator Object
Quest Waypoints Object
Escort Quest Handler Object
Find Quest Handler Object
Kill Quest Handler Object

This Table would also include invisible Game Objects that allowed you to save
the current state of the game to a file or load the current state of the game from a
file e.g.

SAVE GAME OBJECT
LOAD GAME OBJECT

You can see an example of this Database Table in Table 1.37.

1.4.34 M aster Object Table

The next Database Table would hold Point Object Records. Each Record would be
used to hold the properties of special Game Objects for which there was only one
instance in the Game World. This would include the

Master Object,
Master Physics Object,
Master Sound Speaker Object and
Master Player Object.

The Record would map an Object ID to its mass, position, speed, acceleration,
angular position, angular speed and angular acceleration.

134 Event-Database Architecture for Computer Games

TABLE 1.37
Example of an Invisible 3D Point Objects Table

Object ID
Game Object

Code Owner Mass X Y Z
X

Speed
Y

Speed
Z

Speed
Covered Pit
Trigger Object

Covered Pit Code Artful_Dodger 1 1812 4 1955 0 0 0

Bush Snake
Trigger Object

Bush Snake Code Artful_Dodger 1 1813 4 1950 0 0 0

Forcefield
Trigger Object

Forcefield Code Merlin 0 1810 4 1950 0 0 −4

Object ID X Accel. Y Accel. Z Accel.

X Angular
Position
(Deg.)

Y Angular
Position
(Deg.)

Z Angular
Position
(Deg.)

Covered Pit Trigger Object 0 0 0 0 0 0

Bush Snake Trigger Object 0 0 0 0 8 0

Forcefield Trigger Object 0 0 −2 0 0 0

Object ID

X Angular
Speed

(Deg./Sec.)

Y Angular
Speed

(Deg./Sec.)

Z Angular
Speed

(Deg./Sec.)

X Angular
Accel. (Deg./

Sec./Sec.)

Y Angular
Accel. (Deg./

Sec./Sec.)

Z Angular
Accel. (Deg./

Sec./Sec.)
Covered Pit
Trigger
Object

0 0 0 0 0 0

Bush Snake
Trigger
Object

0 0 0 0 0 0

Forcefield
Trigger
Object

0 244 0 0 0 0

Object ID
Collision

Boundary ID
Proximity

Boundary ID
Collision
Event ID

Proximity
Event ID

Covered Pit Trigger Object None Covered Pit
Boundary

None Pitfall Event

Bush Snake Trigger Object None Small Bush
Boundary

None Snake Bite
Event

Forcefield Trigger Object Forcefield
Boundary

None Forcefield
Collision Event

None

Object ID Object Initial Reset Event ID Object Destroyed Event ID
Covered Pit Trigger Object Pit Initial Reset Event Pit Destroyed Event

Bush Snake Trigger Object Bush Snake Reset Event Bush Snake Destroyed Event

Forcefield Trigger Object Forcefield Initial Reset Event Forcefield Destroyed Event

135LPmud Software Production Process

As with the invisible 2D Point Objects, the Record would also include its
Collision boundary, its Proximity boundary, its Collision and Proximity Events.
And the Record would include the Object Initial Reset Event and the Object
Destroyed Event.

But unlike other Point Objects, the Record would also include

1.	 the oldest Game Object loaded into the computer memory,
2.	 the latest Object loaded into memory, after the last Primary Heartbeat

Event, and
3.	 the Random Seed.

The Master Object would use these values to either tell when new Objects had
just been loaded into computer memory and should receive Object Initial Reset
Events. Or when an Object was about to be unloaded from memory and should
receive its Object Unloaded Event. Or what value should be used to start generating
random numbers, from the start of the game. For when the Game World was being
replicated across a computer network, in a Peer-To-Peer Network Architecture,
in a multiplayer game. And the random numbers that had been generated, from its
initial state to its current state, had to be replicated by a new Game Peer that joined
the network. To synchronise its copy of the Game World.

You can see an example of this Database Table in Table 1.38.

1.4.35 T ext Objects Table

The next Database Table would hold Point Object Records. Each Record would
be used to hold the properties of a Text Object. The Record would map an Object
ID to the mass of a Text Object, and a position in a 2D Game World, where its
words would appear. The Record would include the speed, the acceleration, as well
as the orientation, the rotational speed and the rotational acceleration of the text. The

TABLE 1.38
Example of Master Object Table

Object ID Game Object Code Owner X Y
Master Object Master Object Code Staff 0 0

Master Physics Object Master Physics Object Code Staff 0 0

Master Sound Speaker Object Master Sound Speaker Code Staff 0 0

Master Player Object Master Game Controller Code Staff 0 0

Object ID X Speed Y Speed X Accel. Y Accel.
Angular Position

(Deg.)
Master Object 0 0 0 0 0

Master Physics Object 0 0 0 0 0

Master Sound Speaker Object 0 0 0 0 0

Master Player Object 0 0 0 0 0

(Continued)

136 Event-Database Architecture for Computer Games

Collision boundary, the Proximity boundary, the Collision and Proximity Events
of the text would also be included. And the Record would include the Object Initial
Reset Event and the Object Destroyed Event of the Game Object.

In addition to these properties, there would be a description of the appearance of
the text. This would include its font, the shape of its characters, the Texture coor-
dinates of its characters in the font, the words of the text, its colour, its size and its
width.

Object ID
Angular Speed

(Deg./Sec.)
Angular Accel.

(Deg./Sec./Sec.)
Collision

Boundary ID
Master Object 0 0 None

Master Physics Object 0 0 None

Master Sound Speaker Object 0 0 None

Master Player Object 0 0 None

Object ID Proximity Boundary ID Collision Event ID Proximity Event ID
Master Object None None None

Master Physics Object None None None

Master Sound Speaker
Object

None None None

Master Player Object None None None

Object ID
Object Initial Reset

Event ID
Object Destroyed

Event ID
Oldest

Object ID
Master Object Master Initial Reset

Event
Master Destroyed Event Warrior’s

Player Object

Master Physics
Object

Master Physics Initial
Reset Event

Master Physics
Destroyed Event

None

Master Sound Speaker Object Master Speaker Initial
Reset Event

Master Speaker
Destroyed Event

None

Master Player Object Master Game Controller
Initial Reset Event

Master Game Controller
Destroyed Event

None

Object ID Latest Object ID Random Seed
Master Object Forcefield Object 81036166.6545

Master Physics Object None 70290667.5049

Master Sound Speaker Object None 56722427.1801

Master Player Object None 71812558.7534

Object ID
Solid Frictional

Accel.
Liquid Frictional

Accel.
Gas Friction

Accel.
Master Object 0.0 0.0 0.0

Master Physics Object 0.4 0.5 0.2

Master Sound Speaker Object 0.0 0.0 0.0

Master Player Object 0.0 0.0 0.0

TABLE 1.38 (Continued)
Example of Master Object Table

137LPmud Software Production Process

The size of each text would be the height of each character within it. The height
would be the same throughout. The width of each character, however, would be
a proportion of the height. This would differ depending on the proportions of
the character, in the image of the font. That is to say, it would be determined by
the proportions of the rectangle, marked out by the Texture coordinates of each
character.

The width of each text would be the limits to the length of the lines, upon
which its words were laid out on. If all the words were laid out on a line, and the
length of that line exceeded this limit, all the excess words would continue on
the next line underneath. And if the length of this new line exceeded the limit,
the excess words on this line would continue on the next line underneath that,
and so on.

This Table would include the Text Objects used by the Procedurally Generated
Quest System e.g.

Quest Prompt Object.

You can see an example of this Database Table in Table 1.39.

TABLE 1.39
Example of a Text Objects Table

Graphic Object ID Game Object Code Owner Mass X Y
Warrior Player Text Object Warrior Player Text Code Staff 1 1096 380

Thief Player Text Object Thief Player Text Code Staff 1 1610 380

Village Label Object Village Label Code Lord_Teversham 1 90 51

Forest Label Object Forest Label Code Staff 1 181 195

Help Label Object Help Label Code Staff 1 615 457

Object ID X Speed Y Speed X Accel. Y Accel.
Warrior Player Text Object 0 0 0 0

Thief Player Text Object 0 0 0 0

Village Label Object 0 0 0 0

Forest Label Object 0 0 0 0

Help Label Object 0 0 0 0

Object ID
Angular

Position (Deg.)
Angular Speed

(Deg./Sec.)
Angular Accel.

(Deg./Sec./Sec.)
Collision

Boundary ID
Warrior Player Text
Object

0 0 0 None

Thief Player Text Object 0 0 0 None

Village Label Object 0 0 0 None

Forest Label Object 0 0 0 None

Help Label Object 0 0 0 None

(Continued)

138 Event-Database Architecture for Computer Games

1.4.36  2D Image Objects Table

The next Database Table would hold Point Object Records. Each Record would
be used to hold the properties of a 2D Image Object. The Record would map an
Object ID to the mass of an Image Object, the position at which a 2D image would
appear, its speed and its acceleration. The Record would also include the orientation

Object ID
Proximity

Boundary ID
Collision
Event ID

Proximity
Event ID

Object Initial Reset
Event ID

Warrior Player Text Object Player Name
Rectangle

None Change Name
Event 1

Warrior’s Label Initial
Reset Event

Thief Player Text Object Player Name
Rectangle

None Change Name
Event 2

Thief’s Label Initial
Reset Event

Village Label Object None None None Village Label Initial
Reset Event

Forest Label Object None None None Forest Label Initial
Reset Event

Help Label Object None None None Help Label Initial
Reset Event

Object ID
Object

Destroyed Event Texture ID 2D Polygon ID Texture Coord. ID
Warrior Player Text
Object

Warrior’s Label
Destroyed Event

Arial Font
Texture

Warrior Text
Polygon

Warrior Text
Texture Coord

Thief Player Text
Object

Thief’s Label
Destroyed Event

Arial Font
Texture

Thief Text
Polygon

Thief Text Texture
Coord

Village Text Object Village Text
Destroyed Event

Bold Roman
Font Texture

Village Text
Polygon

Village Text
Texture Coord

Forest Text Object Forest Text
Destroyed Event

Bold Roman
Font Texture

Forest Text
Polygon

Forest Text Texture
Coord

Help Text Object Help Text
Destroyed Event

Italic Font
Texture

Help Text
Polygon

Help Text Texture
Coord

Object ID Materials ID Text ID
Colour (RGBA

Format) Size Width
Warrior Player Text
Object

Arial Font Material Nobility Title Bright Yellow 12 144

Thief Player Text Object Arial Font Material Serf Title Bright Yellow 12 108

Village Text Object Bold Roman Font
Material

Village Title White 24 180

Forest Text Object Bold Roman Font
Material

Forest Title White 24 360

Help Text Object Italic Font Material Help Option
Title

Bright Red 15 60

TABLE 1.39 (Continued)
Example of a Text Objects Table

139LPmud Software Production Process

of the Image Object, its rotational speed and its rotational acceleration. And the
Record would include its Collision boundary, its Proximity boundary, its Collision
and Proximity Events. The Secondary Events the Game Object would receive,
when the Record was loaded into or removed from the computer memory, would be
in there too.

Along with these properties, the Record would include the Texture from which
the image would appear, a polygon describing its shape, a set of matching Texture
coordinates and the size of the image. The size would be the scale by which the
default width and height of the image would be increased or reduced.

You can see an example of this Database Table in Table 1.40.

TABLE 1.40
Example of a 2D Image Objects Table

Graphic Object ID Game Object Code Owner Mass X Y
Warrior Health Bar Object Warrior Health Bar Code Staff 1 1059 396

Thief Health Bar Object Thief Health Bar Code Staff 1 1629 396

Game Map Object Game Map Code Staff 1 512 384

Help Icon Object Help Icon Code Staff 1 2663 429

Object ID X Speed Y Speed X Accel. Y Accel.
Angular Position

(Deg.)
Warrior Health Bar Object 0 0 0 −2 0

Thief Health Bar Object 0 0 0 1 0

Game Map Object 0 0 0 0 0

Help Icon Object 0 0 0 0 0

Object ID
Angular Speed

(Deg./Sec.)
Angular Accel.

(Deg./Sec./Sec.)
Collision

Boundary ID
Proximity

Boundary ID
Warrior Health Bar Object 0 0 None None

Thief Health Bar Object 0 0 None None

Game Map Object 0 0 None None

Help Icon Object 0 0 None Help Icon
Boundary

Object ID
Collision
Event ID

Proximity
Event ID

Object Initial Reset
Event ID

Object Destroyed
Event ID

Warrior Health Bar Object None None Warrior’s Health Bar
Initial Reset Event

Warrior’s Health Bar
Destroyed Event

Thief Health Bar Object None None Thief’s Health Bar
Initial Reset Event

Thief’s Health Bar
Destroyed Event

Game Map Object None None Game Map Initial
Reset Event

Game Map
Destroyed Event

Help Icon Object None Help Icon
Selected
Event

Help Icon Initial Reset
Event

Help Icon Destroyed
Event

(Continued)

140 Event-Database Architecture for Computer Games

1.4.37  2D Animation Objects Table

The next Database Table would hold Point Object Records. Each Record would
hold the properties of a 2D Animation Object. The Record would map an Object
ID to the mass of an Animation Object, and the position in a 2D Game World,
where an animated image would be displayed. The Record would include the speed
of the image, its acceleration, its orientation, its rotational speed and its rotational
acceleration. And the Record would include the Collision boundary of the image, its
Proximity boundary, its Collision and Proximity Events. The Record would con-
tain the Object Initial Reset Event and the Object Destroyed Event of the Game
Object as well.

As with 2D Image Objects, the Record would have the current image of the
Object, a polygon describing its shape, a set of matching Texture coordinates and
the size of the image.

But, in addition, the Record would include the sequence of animated images, a list
of the polygons and the Texture coordinates of each Frame. The Record would also
include the rate at which the Frames would be displayed, the length of the animation,
how much time had elapsed since the animation began and an End Event.

If the sequence of animated images, described in the Record, contained more
than one image, then each image would be displayed for an equal amount of time.
This time would be simply the total length of the animation divided by the number of
images. And during each interval, the next Frame of the animation would be taken
from the current image. But if only one image were contained in the sequence, then
all the Frames of the animation would be taken from that image.

A similar principle would apply for the list of polygons displaying each Frame of
the animation. If this list contained more than one polygon, then each one would be

Object ID Texture ID 2D Polygon ID Texture Coord. ID Material ID
Warrior Health
Bar Object

Health Bar
Texture

Health Bar
Polygon

Health Bar Texture
Coord

Health Bar Material

Thief Health Bar
Object

Health Bar
Texture

Health Bar
Polygon

Health Bar Texture
Coord

Health Bar Material

Game Map Object Game Map
Texture

Game Map
Polygon

Game Map Texture
Coord

Game Map Material

Help Icon Object Icons Texture Help Icon
Polygon

Help Icon Texture
Coord

Icons Material

Object ID Width Height
Warrior Health Bar Object 0.9 1

Thief Health Bar Object 0.4 1

Game Map Object 1 1

Help Icon Object 1 1

TABLE 1.40 (Continued)
Example of a 2D Image Objects Table

141LPmud Software Production Process

displayed for an equal amount of time. And this would be determined by the total
length of the animation divided by the number of polygons.

Alternately, some 2D animations may be done by animating the vertices of the
2D polygons of the image. Rather than animating the image itself. In this case, the
Record would include a reference or Animation ID. To the set of the Animated
Vertices in the Database Table of Animated Vertices Graphics Object Records
that should be used to animate the polygon.

You can see an example of this Database Table in Table 1.41.

TABLE 1.41
Example of 2D Animation Objects Table

Graphic Object ID Game Object Code Owner Mass X Y
Village Animation Object Village Animation Code Lord_Teversham 1 90 51

Forest Animation Object Forest Animation Code Staff 1 181 195

Mountain Range Animation
Object

Mountain Range
Animation Code

Lord_Carpathia 1 461 235

2D Icon Crossbow Animation
Object

2D Icon Crossbow
Animation Code

Trader_Legolas 1 1066 876

Object ID X Speed Y Speed X Accel. Y Accel.
Village Animation Object 0 0 0 0

Forest Animation Object 0 0 0 0

Mountain Range Animation Object 0 0 0 0

2D Icon Crossbow Animation Object 0 0 0 0

Object ID
Angular

Position (Deg.)
Angular Speed

(Deg./Sec.)
Angular Accel.

(Deg./Sec./Sec.)
Collision

Boundary ID
Village Animation Object 0 0 0 None

Forest Animation Object 0 0 0 None

Mountain Range
Animation Object

0 0 0 None

2D Icon Crossbow
Animation Object

0 0 0 None

Object ID
Proximity

Boundary ID
Collision
Event ID

Proximity
Event ID

Object Initial
Reset Event ID

Village Animation Object None None None Village Animation
Reset Event

Forest Animation Object None None None Forest Animation
Reset Event

Mountain Range Animation Object None None None Mountain Range
Reset Event

2D Icon Crossbow Animation Object None None None 2D Icon Crossbow
Reset Event

(Continued)

142 Event-Database Architecture for Computer Games

Object ID Object Destroyed Event ID Texture ID 2D Polygon ID
Village Animation
Object

Village Animation Destroyed
Event

Village Animation
Texture

Village Polygon

Forest Animation
Object

Forest Animation Destroyed Event Forest Animation
Texture

Forest Polygon

Mountain Range
Animation Object

Mountain Range Animation
Destroyed Event

Mountain Range
Animation Texture

Mountain Range
Polygon

2D Icon Crossbow
Animation Object

2D Icon Crossbow Animation
Destroyed Event

2D Icon Crossbow
Texture

2D Icon Crossbow
Polygon

Object ID Texture Coord. ID Width Height Texture IDs
Village Animation
Object

Village Frame 5
Texture Coord

1 1 Village Animation Texture

Forest Animation Object Forest Frame 3 Texture
Coord

1 1 Forest Animation Texture

Mountain Range
Animation Object

Mountain Range Frame
2 Texture Coord

1 1 Mountain Range
Animation Texture

2D Icon Crossbow
Animation Object

None 1 1 2D Icon Texture

Object ID 2D Polygon IDs
Texture

Coord. IDs Material ID
Animation

ID
Village Animation
Object

Village Polygon Texture
coordinates of
Frames 1–80

Village Animation
Material

None

Forest Animation
Object

Forest Polygon Texture
coordinates of
Frames 1–90

Forest Animation
Material

None

Mountain Range
Animation Object

Mountain Range
Polygon

Texture
coordinates of
Frames 1–110

Mountain Range
Animation Material

None

2D Icon Crossbow
Animation Object

2D Icon Crossbow
Polygon

None 2D Icon Material 2D Icon
Crossbow
Animation

Object ID
Animation Rate

(Frames Per Sec.)
Animation

Length (Sec.)
Animation

Elapsed (Sec.) End Event ID
Village Animation
Object

60 1.3 0.08 End Village
Animation Event

Forest Animation
Object

60 1.5 0.05 End Forest
Animation Event

Mountain Range
Animation Object

60 1.83 0.03 End Mountain Range
Animation Event

2D Icon Crossbow
Animation Object

60 2 0.00 End Icon Crossbow
Animation Event

TABLE 1.41 (Continued)
Example of 2D Animation Objects Table

143LPmud Software Production Process

1.4.38  2D Player Objects Table

The next Database Table would hold Point Object Records. Each Record would
hold the properties of a 2D Player Object. This could either represent a 2D charac-
ter or creature controlled by a player in a 2D Game World. Or it could be a cursor
controlled by a player in a 2D menu. The Record would map an Object ID to the
mass of a character, creature or cursor, its position, its speed and its acceleration, in a
2D Game World or menu. The Record would include its orientation, rotational speed
and rotational acceleration. The Record would also include its Collision bound-
ary, Proximity boundary, Collision and Proximity Events. And the Record would
include the Secondary Events, the Game Object would receive, when that Record
was loaded into or removed from the computer memory. And the Secondary Event
the Game Object would periodically receive during each round of combat.

Accompanying these properties, the Record would contain a description of the
appearance of the character in the game. This would include an image or icon, a polygon
describing its shape, a set of matching Texture coordinates and the size of the image.

The Record would also contain the properties of the Game Controller that may
be directing the character. These include the Device Group, Device Mapping,
Controller Maximum, Controller Central, Controller Minimum, Analogue
History, Analogue Positions, Digital History and Digital Positions Fields.

The words used in the Device Group, Analogue History and Digital History, to
identify the axes of the Game Controllers, would be ‘Mouse X’ and ‘Mouse Y’. The
former would identify the X-axis. This would control whether the players’ characters
moved left or right across the Game World. The latter would identify the Y-axis.
This would control whether the characters moved up or down the Game World.

The digital buttons on the Game Controllers would be identified by the word
‘Select’ (e.g. the left button on a mouse with two buttons or a button labelled ‘Select’
on a Game Controller or the space bar on a keyboard). This would identify some
option the player had selected on a menu or some frequent command which changes
depending on the context (e.g. causing the player to jump in one location or climb
down in another or pick up the closest item lying nearby in another).

The digital buttons would also be identified by ‘Up’, ‘Down’, ‘Left’ and ‘Right’
(e.g. the cursor keys on a keyboard or directional buttons on a Gamepad). These
would move the players’ characters up, down, left or right across the Game World.

Each button on the players’ keyboards would also be identified by the readable
character or abbreviation on that button (e.g. A, S, D, F, backspace and enter).

Furthermore, with the identity of the devices on the Game Controllers, the
Record would contain the Secondary Events the Object would receive, when a
Game Controllers Host Event occurred. These include the Connect, Disconnect,
Moved, Stopped, Pressed and Released Events.

Besides these, the Record would incorporate the properties of the character that
reflects its strength in combat, its knowledge and its reputation in the Game World.
These include the Weapon Class, Armour Class, health and maximum health of
the character. These include the inventory of the items being used by that character,
and the inventory of the items being carried. These also include the score (or level of
experience) and the name of the character.

144 Event-Database Architecture for Computer Games

This Table would also hold the Game Objects of 2D NPCs. Since these would
share similar properties to the Game Objects of interactive Player Characters.

You can see an example of this Database Table in Table 1.42.

1.4.39  3D Image Objects Table

The next Database Table would hold Point Object Records. Each Record would
hold the properties of a 3D Model Object. The Record would map an Object ID to

TABLE 1.42
Example of 2D Player Objects Table

Graphic Object ID Game Object Code Mass X Y X Speed Y Speed
Warrior 2D Player Object Warrior 2D Player

Code
100 320 240 0 0

Thief 2D Player Object Thief 2D Player Code 90 90 51 0 0

Mage 2D Player Object Mage 2D Player Code 80 121 128 0 0

Cleric 2D Player Object Cleric 2D Player Code 50 192 200 0 0

Object ID X Accel. Y Accel.
Angular

Position (Deg.)
Angular Speed

(Deg./Sec.)
Warrior 2D Player Object 0 0 0 0

Thief 2D Player Object 0 0 0 0

Mage 2D Player Object 0 0 0 0

Cleric 2D Player Object 0 0 0 0

Object ID
Angular Accel.

(Deg./Sec./Sec.)
Collision

Boundary ID
Proximity

Boundary ID
Collision
Event ID

Warrior 2D
Player Object

0 Warrior 2D Low Res.
Polygon

Warrior 2D Low
Res. Polygon

Warrior Collis.
Event

Thief 2D
Player Object

0 Thief 2D Low Res.
Polygon

Thief 2D Low Res.
Polygon

Thief Collis.
Event

Mage 2D
Player Object

0 Mage 2D Low Res.
Polygon

Mage 2D Low Res.
Polygon

Mage Collis.
Event

Cleric 2D
Player Object

0 Cleric 2D Low Res.
Polygon

Cleric 2D Low Res.
Polygon

Cleric Collis.
Event

Object ID Proximity
Event ID

Object Initial
Reset Event ID

Object Destroyed
Event ID

Object Heartbeat
Event ID

Warrior 2D Player
Object

Enter Player 1
Event

Player 1 Reset
Event

Player 1 Destroyed
Event

Player 1 Heartbeat
Event

Thief 2D Player
Object

Enter Player 2
Event

Player 2 Reset
Event

Player 2 Destroyed
Event

Player 2 Heartbeat
Event

Mage 2D Player
Object

Enter Player 3
Event

Player 3 Reset
Event

Player 3 Destroyed
Event

Player 3 Heartbeat
Event

Cleric 2D Player
Object

Enter Player 4
Event

Player 4 Reset
Event

Player 4 Destroyed
Event

Player 4 Heartbeat
Event

(Continued)

145LPmud Software Production Process

Object ID Texture ID 2D Polygon ID Texture Coord. ID Material ID
Warrior 2D Player
Object

Icons Texture Warrior 2D High
Res. Polygon

Warrior Attack
Texture Coord

Icons Material

Thief 2D Player Object Icons Texture Thief 2D High
Res. Polygon

Thief Face Left
Texture Coord

Icons Material

Mage 2D Player Object Icons Texture Mage 2D High
Res. Polygon

Mage Attack
Texture Coord

Icons Material

Cleric 2D Player Object Icons Texture Cleric 2D High
Res. Polygon

Cleric Face Left
Texture Coord

Icons Material

Object ID Width Height Device Group Device Mapping
Warrior 2D Player Object 1 1 Mouse X, Mouse Y,

Select
X, Y Fields

Thief 2D Player Object 1 1 Up, Down, Left,
Right, Select

Y, Y, X, X Fields

Mage 2D Player Object 1 1 Mouse X, Mouse Y,
Select

X, Y Fields

Cleric 2D Player Object 1 1 Up, Down, Left,
Right, Select

Y, Y, X, X Fields

Object ID
Controller
Maximum

Controller
Central

Controller
Minimum

Analogue
History

Analogue
Positions

Warrior 2D Player Object 7 0 −7 Mouse X,
Mouse X

−30, −18

Thief 2D Player Object 1 0 −1 Empty Empty

Mage 2D Player Object 7 0 −7 Mouse X,
Mouse Y

−22, 33

Cleric 2D Player Object 1 0 −1 Empty Empty

Object ID
Digital
History

Digital
Positions Connect Event ID Disconnect Event ID

Warrior 2D Player Object Select 56 Player 1 Connected
Event

Player 1 Disconnected
Event

Thief 2D Player Object Left, Up,
Select

132, 132, 134 Player 2 Connected
Event

Player 2 Disconnected
Event

Mage 2D Player Object Start 96 Player 3 Connected
Event

Player 3 Disconnected
Event

Cleric 2D Player Object Left, Up,
Select

132, 132, 134 Player 4 Connected
Event

Player 4 Disconnected
Event

Object ID Moved Event ID Stopped Event ID Pressed Event ID
Warrior 2D Player Object Player 1 Moved Event Player 1 Stopped Event Player 1 Pressed Event

Thief 2D Player Object Player 2 Moved Event Player 2 Stopped Event Player 2 Pressed Event

Mage 2D Player Object Player 3 Moved Event Player 3 Stopped Event Player 3 Pressed Event

Cleric 2D Player Object Player 4 Moved Event Player 4 Stopped Event Player 4 Pressed Event

TABLE 1.42 (Continued)
Example of 2D Player Objects Table

(Continued)

146 Event-Database Architecture for Computer Games

the mass of a 3D model, and its position in a Game World. The Record would include
the speed and the acceleration of the model. And the Record would include its rota-
tion about its local X, Y and Z axes, its X, Y and Z angular speeds, its X, Y and Z
angular accelerations. The Record would also include the Collision boundary of the
model, its Proximity boundary, its Collision Event and its Proximity Event. And
the Record would include the Object Initial Reset Event and the Object Destroyed
Event of the model.

Along with these properties, the Record would include a description of the appear-
ance of the model. This would include the Texture, a 3D Model ID, a set of matching
Texture coordinates and the size of the model. The size would be the scale by which
the default width, height and breadth of the model would be increased or reduced.

This Table would include all the inanimate Game Objects used by the
Procedurally Generated Quest System e.g.

Quest Lost Object.

You can see an example of this Database Table in Table 1.43.

1.4.40  3D Animation Objects Table

The next Database Table would hold Point Object Records. Each Record would
hold the properties of a 3D Animation Object. The Record would map an Object
ID to the mass of an animated model, its position, its speed and its acceleration, in a
3D Game World. The Record would include the angle of rotation of the model, about
its local X, Y and Z axes, its speed of rotation about these axes, as well as its accel-
eration around these axes. The Record would also include its Collision boundary, its
Proximity boundary, its Collision Event and its Proximity Event. And the Record
would contain the Secondary Events the Game Object would receive, when that
Record was loaded into or removed from the computer memory.

Object ID Released Event ID Health
Max

Health
Weapon

Class
Armour

Class
Warrior 2D Player Object Player 1 Released Event 230.38 300 60 200

Thief 2D Player Object Player 2 Released Event −1 200 40 160

Mage 2D Player Object Player 3 Released Event 140.10 180 30 80

Cleric 2D Player Object Player 4 Released Event 173.33 190 20 50

Object ID Used Inventory Carried Inventory Experience Name
Warrior 2D Player Object Empty Empty 57 Warrior Title

Thief 2D Player Object Empty Empty 0 Thief Title

Mage 2D Player Object Empty Empty 8123 Mage Title

Cleric 2D Player Object Empty Empty 164,440 Cleric Title

TABLE 1.42 (Continued)
Example of 2D Player Objects Table

147LPmud Software Production Process

TABLE 1.43
Example of 3D Image Objects Table

Graphic Object ID
Game

Object Code Owner Mass X Y Z
X

Speed
Y

Speed
Forest Tree Object 1 Forest Tree

Code
Staff 0 1812 4 1946 0 0

Forest Tree Object 2 Forest Tree
Code

Staff 0 1814 4 1945 0 0

Forest Bush Object 1 Forest Bush
Code

Staff 0 1813 4 1950 0 0

Forest Bush Object 2 Forest Bush
Code

Staff 0 1811 4 1946 0 0

Object ID Z Speed X Accel. Y Accel. Z Accel.
X Angle
(Deg.)

Y Angle
(Deg.)

Z Angle
(Deg.)

Forest Tree Object 1 0 0 0 0 0 1 0

Forest Tree Object 2 0 0 0 0 0 316 0

Forest Bush Object 1 0 0 0 0 0 56 0

Forest Bush Object 2 0 0 0 0 0 72 0

Object ID

X Angular
Speed

(Deg./Sec.)

Y Angular
Speed

(Deg./Sec.)

Z Angular
Speed

(Deg./Sec.)

X Angular
Accel. (Deg./

Sec./Sec.)
Forest Tree Object 1 0 0 0 0

Forest Tree Object 2 0 0 0 0

Forest Bush Object 1 0 0 0 0

Forest Bush Object 2 0 0 0 0

Object ID
Y Angular Accel.
(Deg./Sec./Sec.)

Z Angular Accel.
(Deg./Sec./Sec.)

Collision Boundary
ID

Proximity
Boundary ID

Forest Tree Object 1 0 0 Forest Tree Boundary None

Forest Tree Object 2 0 0 Forest Tree Boundary None

Forest Bush Object 1 0 0 Forest Bush Boundary None

Forest Bush Object 2 0 0 Forest Bush Boundary None

Object ID
Collision
Event ID

Proximity
Event ID

Object Initial Reset
Event ID

Object Destroyed
Event ID

Forest Tree Object 1 Forest Tree
Collision Event

None Forest Tree Initial
Reset Event 1

Forest Tree
Destroyed Event 1

Forest Tree Object 2 Forest Tree
Collision Event

None Forest Tree Initial
Reset Event 2

Forest Tree
Destroyed Event 2

Forest Bush Object 1 Forest Bush
Collision Event

None Forest Bush Initial
Reset Event 1

Forest Bush
Destroyed Event 1

Forest Bush Object 2 Forest Bush
Collision Event

None Forest Bush Initial
Reset Event 2

Forest Bush
Destroyed Event 2

(Continued)

148 Event-Database Architecture for Computer Games

Like 3D Model Objects, the Record would include the Texture of the model,
a 3D Model ID, a set of matching Texture coordinates and the size of the model.
Unlike 3D Model Objects, the Record would include the Animation ID, of the set
of Animated Vertices that would be used, and the End Event that would signal the
end of the animation.

You can see an example of this Database Table in Table 1.44.

1.4.41  3D Player Objects Table

The next Database Table would hold Point Object Records. Each Record would
hold the properties of a 3D Player Object. The Record would map an Object ID
to the mass of a character (or creature) in the game, and its position in a 3D Game
World. The Record would include the speed of the character and its acceleration. The
Record would also include its rotation about its local X, Y and Z axes, the speed of
these rotations and the acceleration of these rotations. Together with these proper-
ties, the Record would contain the Collision boundary, the Proximity boundary, the
Collision Event and the Proximity Event of the Game Object. And the Record
would include the Object Initial Reset Event and the Object Destroyed Event of
the Game Object. And the Object Heartbeat Event the Game Object would peri-
odically receive during each round of combat.

Similar to other 3D Model Objects, the Record would include its Texture, a
3D model, a corresponding set of Texture coordinates and the size of the model.
But unlike other 3D Model Objects, the Record would contain the properties of
a player’s Game Controller. These include the Device Group, Device Mapping,
Controller Maximum, Controller Central, Controller Minimum, Analogue
History, Analogue Positions, Digital History and Digital Positions Fields.

Object ID Texture ID 3D Model ID Texture Coord. ID Materials ID
Forest Tree Object 1 Forest Tree

Texture
Forest Tree
Model

Forest Tree Texture
Coord

Forest Tree Material

Forest Tree Object 2 Forest Tree
Texture

Forest Tree
Model

Forest Tree Texture
Coord

Forest Tree Material

Forest Bush Object 1 Forest Bush
Texture

Forest Bush
Model

Forest Bush
Texture Coord

Forest Bush Material

Forest Bush Object 2 Forest Bush
Texture

Forest Bush
Model

Forest Bush
Texture Coord

Forest Bush Material

Object ID Width Height Breadth
Forest Tree Object 1 1 2.3 1

Forest Tree Object 2 1 4.5 1

Forest Bush Object 1 1 1 1

Forest Bush Object 2 1 1 1

TABLE 1.43 (Continued)
Example of 3D Image Objects Table

149LPmud Software Production Process

TABLE 1.44
Example of 3D Animation Objects Table

Graphic Object ID
Game Object

Code Owner Mass X Y Z
Warrior Death Animation
Object

Warrior Death
Animation Code

Staff 90.65 1810 4 1950

Thief Death Animation Object Thief Death
Animation Code

Staff 71.66 1849 4 1947

Mage Attack Animation Object Mage Attack
Animation Code

Staff 80.0 2821.57 4 263.63

Cleric Jump Animation Object Cleric Jump
Animation Code

Staff 80.0 844.98 4 2662.59

Object ID X Speed Y Speed Z Speed X Accel. Y Accel. Z Accel.
Warrior Death
Animation Object

0 0 −4 0 0 −2

Thief Death
Animation Object

0 0 0 −0.62 0 −0.6

Mage Attack
Animation Object

10 0 0 0.35937685 0 0.48958475

Cleric Jump
Animation Object

24 0 0 0.09604891 0 0.48528234

Object ID

X Angular
Position
(Deg.)

Y Angular
Position
(Deg.)

Z Angular
Position
(Deg.)

X Angular
Speed (Deg.

Per Sec.)

Y Angular
Speed (Deg.

Per Sec.)

Z Angular
Speed (Deg.

Per Sec.)
Warrior Death
Animation Object

0 274 0 0 0 0

Thief Death
Animation Object

0 280 0 0 2 0

Mage Attack
Animation Object

0 409 0 0 1.44 0

Cleric Jump
Animation Object

0 322 0 0 1.14 0

Object ID

X Angular
Accel. (Deg./

Sec./Sec.)

Y Angular
Accel. (Deg./

Sec./Sec.)

Z Angular
Accel. (Deg./

Sec./Sec.) Collision Boundary ID
Warrior Death
Animation Object

0 0 0 Warrior’s Boundary

Thief Death
Animation Object

0 1 0 Thief’s Boundary

Mage Attack
Animation Object

0 3.18 0 Mage’s Boundary

Cleric Jump
Animation Object

0 8.45 0 Cleric’s Boundary

(Continued)

150 Event-Database Architecture for Computer Games

Object ID
Proximity

Boundary ID
Collision Event

ID
Proximity
Event ID

Object Initial Reset
Event ID

Warrior Death
Animation Object

None Warrior’s
Collision Event

None Warrior’s Death
Animation Reset Event

Thief Death
Animation Object

None Thief’s Collision
Event

None Thief’s Death Animation
Reset Event

Mage Attack
Animation Object

None Mage’s Collision
Event

None Mage’s Attack Animation
Reset Event

Cleric Jump
Animation Object

None Cleric’s Collision
Event

None Cleric’s Jump Animation
Reset Event

Object ID
Object Destroyed

Event ID Texture ID
3D Model

ID
Texture

Coord. ID Material ID
Warrior Death
Animation
Object

Warrior’s Death
Animation
Destroyed Event

Warrior
Texture

Warrior
Model

Warrior
Texture
Coordinates

Warrior
Material

Thief Death
Animation
Object

Thief’s Death
Animation
Destroyed Event

Thief
Texture

Thief
Model

Thief Texture
Coordinates

Thief
Material

Mage Attack
Animation
Object

Mage’s Attack
Animation
Destroyed Event

Mage
Texture

Mage
Model

Mage Texture
Coordinates

Mage
Material

Cleric Jump
Animation
Object

Cleric’s Jump
Animation
Destroyed Event

Cleric
Texture

Cleric
Model

Cleric
Texture
Coordinates

Cleric
Material

Object ID Width Height Breadth
Warrior Death Animation Object 0.22 0.8 0.12

Thief Death Animation Object 0.22 0.76 0.12

Mage Attack Animation Object 0.22 0.93 0.12

Cleric Jump Animation Object 0.22 0.59 0.12

Object ID Animation ID End Event
Warrior Death Animation
Object

Warrior’s Death Animation End Warrior’s Death Animation
Event

Thief Death Animation
Object

Thief’s Death Animation End Thief’s Death Animation
Event

Mage Attack Animation
Object

Mage’s Attack Animation End Mage’s Attack Animation
Event

Cleric Jump Animation
Object

Cleric’s Jump Animation End Cleric’s Jump Animation
Event

TABLE 1.44 (Continued)
Example of 3D Animation Objects Table

151LPmud Software Production Process

The words used in the Device Group, Analogue History and Digital History, to
identify the two axes of the Game Controllers, would be ‘Forwards’ and ‘Sideways’.
The former would identify the Y-axis (e.g. the Y-axis of a mouse or a joystick on a
Game Controller). This would control whether the players’ characters moved away
from, or backwards towards, a camera displaying the view of the Game World. The
latter would identify the X-axis (e.g. the X-axis of a mouse or a joystick on a Game
Controller. This would control whether the characters moved to one side of the view,
or the other.

The digital buttons on the Game Controllers would be identified by the word
‘Select’ (e.g. the left button on a mouse with two buttons or a button labelled ‘Select’
on a Game Controller or the space bar on a keyboard). This would identify some
option the player had selected on a menu or some frequent command which changes
depending on the context (e.g. causing the player to jump in one location or climb
down in another or pick up the closest item lying nearby in another).

Each button on the players’ keyboards would also be identified by the readable
character or abbreviation on that button (e.g. A, S, D, F, backspace and enter).

As well as the identities of the devices on the Game Controllers, the Record would
contain the Secondary Events the Object would receive, when a Game Controllers
Host Event occurred. These include the Connect, Disconnect, Moved, Stopped,
Pressed and Released Events.

In addition, the Record would comprise the properties of the character that reflect
its knowledge of the game, and reputation in the Game World. These include the
Weapon Class, Armour Class, health and maximum health of the character. These
include the inventory of items being used and the inventory of items being carried
by that character. These also include the score (or level of experience) and the name
of the character.

This Table would also hold the Game Objects of 3D NPCs. Since these would
share similar properties to the Game Objects of interactive Player Characters.
This includes all the NPCs used by the Procedurally Generated Quest
System e.g.

Quest Giver Object

Quest Target Object.

You can see an example of this Database Table in Table 1.45.

1.4.42  2D Camera Objects Table

The next Database Table would hold Point Object Records. Each Record would
hold the properties of a 2D Camera Object. The Record would map an Object ID
to the mass of a camera, its position, its speed and its acceleration in a 2D Game
World. The Record would contain the angle of rotation of the camera, about its cen-
tre, as well as the speed and the acceleration of the rotation, around this centre.
The Record would include the Collision boundary, the Proximity boundary, the
Collision Event and the Proximity Event of the camera. And the Record would

152 Event-Database Architecture for Computer Games

TABLE 1.45
Example of 3D Player Objects Table

Graphic Object ID Game Object Code Mass
Warrior 3D Player Object Warrior 3D Player Code 90.65

Thief 3D Player Object Thief 3D Player Code 71.66

Mage 3D Player Object Mage 3D Player Code 84.5638438998

Cleric 3D Player Object Cleric 3D Player Code 53.7580015622

Object ID X Y Z X Speed Y Speed Z Speed
Warrior 3D Player Object 1810 4 1150 0 0 −4

Thief 3D Player Object 1809 4 1947 0 0 0

Mage 3D Player Object 254.722392715 4 3536.81 0 0 0

Cleric 3D Player Object 385.136867866 4 2051.45 2.0 0 0

Object ID X Accel. Y Accel. Z Accel.
Warrior 3D Player Object 0 0 −2

Thief 3D Player Object −0.62 0 −0.6

Mage 3D Player Object 0.738996442115 0 0.797312420234

Cleric 3D Player Object 0.119582546636 0 0.873192766512

Object ID

X Angular
Position
(Deg.)

Y Angular
Position
(Deg.)

Z Angular
Position
(Deg.)

X Angular
Speed (Deg./

Sec.)

Y Angular
Speed (Deg./

Sec.)

Z Angular
Speed

(Deg./Sec.)
Warrior 3D
Player
Object

0 274 0 0 0 0

Thief 3D
Player
Object

0 280 0 0 2 0

Mage 3D
Player
Object

0 57.0104591885 0 0 1.20654100303 0

Cleric 3D
Player
Object

0 163.723237027 0 0 0.989068027043 0

Object ID
X Angular Accel.
(Deg./Sec./Sec.)

Y Angular Accel.
(Deg./Sec./Sec.)

Z Angular Accel.
(Deg./Sec./Sec.)

Collision
Boundary ID

Warrior 3D Player
Object

0 0 0 Warrior’s Low
Res. Boundary

Thief 3D Player
Object

0 1 0 Thief’s Low Res.
Boundary

Mage 3D Player
Object

0 4.20412222112 0 Mage’s Low Res.
Boundary

Cleric 3D Player
Object

0 0.105251248162 0 Cleric’s Low Res.
Boundary

(Continued)

153LPmud Software Production Process

Object ID
Proximity

Boundary ID Collision Event ID Proximity Event ID
Object Initial
Reset Event ID

Warrior 3D Player
Object

Warrior’s Low
Res. Boundary

Player 1 Collision
Event

Player 1 Proximity
Event

Player 1 Reset
Event

Thief 3D Player
Object

Thief’s Low Res.
Boundary

Player 2 Collision
Event

Player 2 Proximity
Event

Player 2 Reset
Event

Mage 3D Player
Object

Mage’s Low Res.
Boundary

Player 3 Collision
Event

Player 3 Proximity
Event

Player 3 Reset
Event

Cleric 3D Player
Object

Cleric’s Low Res.
Boundary

Player 4 Collision
Event

Player 4 Proximity
Event

Player 4 Reset
Event

Object ID
Object Destroyed

Event ID
Object Heartbeat

Event ID Texture ID 3D Model ID
Warrior 3D
Player Object

Player 1 Destroyed Event Player 1 Heartbeat
Event

Warrior
Texture

Warrior Model

Thief 3D Player
Object

Player 2 Destroyed Event Player 2 Heartbeat
Event

Thief
Texture

Thief Model

Mage 3D Player
Object

Player 3 Destroyed Event Player 3 Heartbeat
Event

Mage
Texture

Mage Model

Cleric 3D Player
Object

Player 4 Destroyed Event Player 4 Heartbeat
Event

Cleric
Texture

Cleric Model

Object ID Texture Coord. ID Material ID Width Height Breadth
Warrior 3D Player
Object

Warrior Texture
Coordinates

Warrior Material 0.22 0.8 0.12

Thief 3D Player
Object

Thief Texture
Coordinates

Thief Material 0.22 0.76 0.12

Mage 3D Player
Object

Mage Texture
Coordinates

Mage Material 0.22 0.93 0.12

Cleric 3D Player
Object

Cleric Texture
Coordinates

Cleric Material 0.22 0.59 0.12

Object ID Device Group Device Mapping
Controller
Maximum

Controller
Central

Warrior 3D Player
Object

Sideways, Forwards,
Select

X Accel., Z Accel.
Fields

8 0

Thief 3D Player
Object

Up, Down, Left, Right,
Select, other buttons

Z Accel., Z Accel.,
X Accel., X
Accel. Fields

8 0

Mage 3D Player
Object

Sideways, Forwards,
Select

X Accel., Z Accel.
Fields

8 0

Cleric 3D Player
Object

Up, Down, Left, Right,
Select, other buttons

Z Accel., Z Accel.,
X Accel., X
Accel. Fields

8 0

TABLE 1.45 (Continued)
Example of 3D Player Objects Table

(Continued)

154 Event-Database Architecture for Computer Games

Object ID Controller Minimum Analogue History Analogue Positions
Warrior 3D Player Object −8 Forwards, Forwards 4, 8

Thief 3D Player Object −8 Empty Empty

Mage 3D Player Object −8 Sideways, Sideways −4, −8

Cleric 3D Player Object −8 Empty Empty

Object ID
Digital
History Digital Positions

Connect
Event ID

Disconnect
Event ID

Warrior 3D
Player Object

Select, Select 152, 153 Player 1
Connected Event

Player 1
Disconnected Event

Thief 3D
Player Object

D, D, i, i, e, e. 155, 155, 155, 155,
155, 155

Player 2
Connected Event

Player 2
Disconnected Event

Mage 3D
Player Object

Select, Select,
Select

163, 164 Player 3
Connected Event

Player 3
Disconnected Event

Cleric 3D
Player Object

H, H, e, e, l, l,
p, p.

160, 160, 160, 160,
160, 160, 160, 160

Player 4
Connected Event

Player 4
Disconnected Event

Object ID Moved Event ID Stopped Event ID Pressed Event ID
Warrior 3D Player Object Player 1 Moved Event Player 1 Stopped Event Player 1 Pressed Event

Thief 3D Player Object Player 2 Moved Event Player 2 Stopped Event Player 2 Pressed Event

Mage 3D Player Object Player 3 Moved Event Player 3 Stopped Event Player 3 Pressed Event

Cleric 3D Player Object Player 4 Moved Event Player 4 Stopped Event Player 4 Pressed Event

Object ID Released Event ID Health
Max

Health
Weapon

Class
Armour

Class
Warrior 3D Player
Object

Player 1 Released Event 263 300 60 200

Thief 3D Player Object Player 2 Released Event −1 200 40 160

Mage 3D Player Object Player 3 Released Event 180 180 30 80

Cleric 3D Player Object Player 4 Released Event 189 190 20 50

Object ID Used Inventory
Carried

Inventory Experience Name
Warrior 3D Player
Object

Longsword Object, Metal
Shield Object

Lamp Object 33,000 Warrior
Title

Thief 3D Player
Object

Small Stick Object, Leather
Gloves Object, Rags Object

Torch Object 57 Thief Title

Mage 3D Player
Object

Book of Magic Spells Object,
Magic Robes Object, Gold
Potion Object, Green Potion
Object

Elfstone Elessar
Object

16,437 Mage Title

Cleric 3D Player
Object

Book of Prayers Object,
Cleric Robes Object

Lantern Object 100 Cleric Title

TABLE 1.45 (Continued)
Example of 3D Player Objects Table

155LPmud Software Production Process

contain the Secondary Events the Game Object would receive, when the Record
was loaded into or removed from the computer memory.

The Record would also contain the properties of the camera that would be used
to display its view of the Game World. These would include the Projection Target
Field or where this view would be displayed. This would either be the computer
screen, or it could be a Texture, in the Game Database. In the latter case, this Texture
could then be subsequently used to display another Game Object. This could be
used to produce various visual effects. For example, it could be used to display a
magic mirror that allowed a character, in one part of the Game World, to see another
very distant or inaccessible part of the world.

The Record would also include the size of the visible area, around the position of
the camera. And it would include the position of the projected view, from the camera,
on the target, and the size of this projection.

You can see an example of this Database Table in Table 1.46.

1.4.43  3D Camera Objects Table

The next Database Table would hold Point Object Records. Each Record would
hold the properties of a 3D Camera Object. The Record would map an Object ID
to the mass of a camera, its position and its acceleration in a 3D Game World. The

TABLE 1.46
Example of 2D Camera Objects Table

Object ID
Game Object

Code Mass X Y X Speed
Warrior
Orthographic Top
View Camera
Object

Warrior 2D
Camera Code

1 1344 388 0

Thief Orthographic
Side View Camera
Object

Thief 2D
Camera Code

1 320 240 0

Mage Orthographic
Front View
Camera Object

Mage 2D
Camera Code

1 1634.420 2019.917 1.622

Cleric Isometric
Camera Object

Cleric 2D
Camera Code

1 2664.628 279.527 1.2153

Druid Chromatic
Camera Object

Druid 2D
Camera Code

1 1129.41366818 365.474630159 1.42660451321

Ranger 2D Audio
Camera Object

Ranger 2D
Camera Code

1 3151.98305585 261.582901361 0.518819832255

Necromancer
Textual Camera
Object

Necromancer
2D Camera
Code

1 2490.87135131 34.9295704069 1.44158804266

(Continued)

156 Event-Database Architecture for Computer Games

Object ID Y Speed X Accel. Y Accel. Angular Position (Deg.)
Warrior Orthographic Top View
Camera Object

0 0 0 291.864936205

Thief Orthographic Side View
Camera Object

0 5 0 201.116385776

Mage Orthographic Front View
Camera Object

0 0.804 0 299.061115244

Cleric Isometric Camera Object 0 0.068 0 283.91891155

Druid Chromatic Camera Object 0 6.31769152035 0 282.229787675

Ranger 2D Audio Camera Object 0 6.22285183871 0 274.248664719

Necromancer Textual Camera Object 0 3.84289110902 0 352.331629614

Object ID

Angular
Speed

(Deg./Sec.)

Angular Accel.
(Deg./Sec./

Sec.)
Collision

Boundary ID

Proximity
Boundary

ID
Warrior Orthographic Top
View Camera Object

0 0.544338428923 Warrior 2D Camera
Boundary

None

Thief Orthographic Side
View Camera Object

0 4.7982233656 Thief 2D Camera
Boundary

None

Mage Orthographic Front
View Camera Object

0 4.35920519124 Mage 2D Camera
Boundary

None

Cleric Isometric Camera
Object

0 2.88530937492 Cleric 2D Camera
Boundary

None

Druid Chromatic Camera
Object

0 5.34491392282 Druid 2D Camera
Boundary

None

Ranger 2D Audio Camera
Object

0 1.65907473689 Ranger 2D Camera
Boundary

None

Necromancer Textual
Camera Object

0 9.44339322825 Necromancer 2D
Camera Boundary

None

Object ID Collision Event ID
Proximity
Event ID

Object Initial Reset
Event ID

Warrior Orthographic Top
View Camera Object

Warrior 2D Camera Collision
Event

None Warrior 2D Camera Reset
Event

Thief Orthographic Side
View Camera Object

Thief 2D Camera Collision
Event

None Thief 2D Camera Reset
Event

Mage Orthographic Front
View Camera Object

Mage 2D Camera Collision
Event

None Mage 2D Camera Reset
Event

Cleric Isometric Camera
Object

Cleric 2D Camera Collision
Event

None Cleric 2D Camera Reset
Event

Druid Chromatic Camera
Object

Druid 2D Camera Collision
Event

None Druid 2D Camera Reset
Event

Ranger 2D Audio Camera
Object

Ranger 2D Camera Collision
Event

None Ranger 2D Camera Reset
Event

Necromancer Textual
Camera Object

Necromancer 2D Camera
Collision Event

None Necromancer 2D Camera
Reset Event

TABLE 1.46 (Continued)
Example of 2D Camera Objects Table

(Continued)

157LPmud Software Production Process

Object ID
Object Destroyed

Event ID Projection Type
Projection

Target
Warrior Orthographic Top View
Camera Object

Warrior 2D Camera
Destroyed Event

Orthographic Screen

Thief Orthographic Side View Camera
Object

Thief 2D Camera
Destroyed Event

Orthographic Screen

Mage Orthographic Front View
Camera Object

Mage 2D Camera
Destroyed Event

Orthographic Screen

Cleric Isometric Camera Object Cleric 2D Camera
Destroyed Event

Isometric Screen

Druid Chromatic Camera Object Ranger 2D Camera
Destroyed Event

Chromatic Screen.

Ranger 2D Audio Camera Object Ranger 2D Camera
Destroyed Event

Audio Screen

Necromancer Textual Camera Object Necromancer 2D Camera
Destroyed Event

Textual Screen

Object ID
Projection

X
Projection

Y
Projection

Width
Projection

Height
Warrior Orthographic Top View Camera
Object

512 384 1024 768

Thief Orthographic Side View Camera Object 512 384 1024 768

Mage Orthographic Front View Camera
Object

400 300 800 600

Cleric Isometric Camera Object 400 300 800 600

Druid Chromatic Camera Object 512 384 1024 768

Ranger 2D Audio Camera Object 512 384 1024 768

Necromancer Textual Camera Object 400 300 800 600

Object ID Left Right Top Bottom
Warrior Orthographic Top View Camera Object 1244 1444 1 0

Thief Orthographic Side View Camera Object 220 420 1 0

Mage Orthographic Front View Camera Object 1534 1734 1 0

Cleric Isometric Camera Object 2564 2764 1 0

Druid Chromatic Camera Object 1029 1229 1 0

Ranger 2D Audio Camera Object 3051 3251 1 0

Necromancer Textual Camera Object 2390 25,901 1 0

Object ID Near Far
Warrior Orthographic Top View Camera Object 288 488

Thief Orthographic Side View Camera Object 140 340

Mage Orthographic Front View Camera Object 1919 2119

Cleric Isometric Camera Object 179 379

Druid Chromatic Camera Object 265 465

Ranger 2D Audio Camera Object 161 361

Necromancer Textual Camera Object −66 134

TABLE 1.46 (Continued)
Example of 2D Camera Objects Table

(Continued)

158 Event-Database Architecture for Computer Games

Record would include the rotation of the camera, about its local X, Y and Z axes,
the speed and the acceleration of the rotation about these axes. The Record would
also include the Collision boundary, the Proximity boundary, the Collision Event
and the Proximity Event of the camera. And the Record would include the Object
Initial Reset Event and the Object Destroyed Event of the Game Object.

Along with the properties for the position and motion of the camera, the Record
would include the properties for displaying its view of the Game World. These include
a Projection Target Field, a Field of View angle, a near and far focal length, the
position of the projected view, from the camera, on the target, and the size of the
projection.

You can see an example of this Database Table in Table 1.47.
The Records of the cameras would be the last of the entities of the Game

Database, required by the Event-Database Architecture. And these would be the
last required to implement the game design of LPmud.

1.4.44 D atabase Checksum Table

The next Database Table would hold Database Checksum Records. These are a
form of Database Meta Data Records. Each Record would hold the Primary Key of
another Database Record, and the Checksum or sum of the values in the Database
Fields of that Record. This would be used to check when the contents of that Record
had become corrupted. Either when that Record was transferred between storage
media. Or when that Record was transferred from one computer to another in a
computer network. Either between a Game Server and a Game Client in a Client
Server Network Architecture. Or between two Game Peers in a Peer-To-Peer
Network Architecture.

Object ID Device Group ID
Warrior Orthographic Top View Camera Object Joystick1:192.168.0.1:Player1:PassP11234:UGx

heWVyMTpQYXNzUDExMjM0Cg==

Thief Orthographic Side View Camera Object Keyboard1:192.168.0.1:Player2:PassP21234:UG
xheWVyMjpQYXNzUDIxMjM0Cg==

Mage Orthographic Front View Camera Object Joystick2:192.168.0.2:Player3:PassP35678:UGx
heWVyMzpQYXNzUDM1Njc4Cg==

Cleric Isometric Camera Object Keyboard2:192.168.0.2:Player4:PassP45678:UG
xheWVyNDpQYXNzUDQ1Njc4Cg==

Druid Chromatic Camera Object Gamepad1:192.168.0.3:Player5:PassP591011:U
GxheWVyNTpQYXNzUDU5MTAxMQo=

Ranger 2D Audio Camera Object Gamepad2:192.168.0.4:Player6:UGxheWVyNjp
QYXNzUDYxMjEzMTQK

Necromancer Textual Camera Object Gamepad3:192.168.0.5:Player7:PassP7151617:U
GxheWVyNzpQYXNzUDcxNTE2MTcK

TABLE 1.46 (Continued)
Example of 2D Camera Objects Table

159LPmud Software Production Process

TABLE 1.47
Example of 3D Camera Objects Table

Object ID
Game Object

Code Mass X Y Z X Speed
Warrior 3D
Camera Object

Warrior 3D
Camera Code

1 258.608675331 7 3375.12464205 0.43

Thief 3D
Camera Object

Thief 3D
Camera Code

1 3948.21039433 0 2567.08262423 4.98

Mage 3D
Camera Object

Mage 3D
Camera Code

1 3678.34595975 0 1952.58023527 7.07

Cleric 3D
Camera Object

Cleric 3D
Camera Code

1 2241.58852606 0 2034.2849705 0.15

Druid 3D
Chromatic
Camera Object

Druid 3D
Camera Code

1 284.902927482 0 3299.95912266 9.77428673025

Ranger 3D
Audio Camera
Object

Ranger 3D
Camera Code

1 1847.8893691 0 3313.58762813 8.0994062359

Necromancer
3D Textual
Camera Object

Necromancer
3D Camera
Code

1 2869.74162608 0 1399.45354278 5.31980726023

Portal Camera
Object

Portal Camera
Code

1 1075.372 9 3649.974 0

Object ID Y Speed Z Speed X Accel.
Warrior 3D Camera Object 0 4.36 6.48002571176

Thief 3D Camera Object 0 0.29 1.60247478408

Mage 3D Camera Object 0 3.72 6.18203033847

Cleric 3D Camera Object 0 7.88 1.99297510123

Druid 3D Chromatic Camera Object 0 4.86 4.20695534552

Ranger 3D Audio Camera Object 0 6.96 0.429883589824

Necromancer 3D Textual Camera Object 0 0.83 9.53908970233

Portal Camera Object 0 0 0

Object ID Y Accel. Z Accel.
X Angular Position

(Deg.)
Warrior 3D Camera Object 0 3.71498104589 0

Thief 3D Camera Object 0 3.58360501872 0

Mage 3D Camera Object 0 8.09118922349 0

Cleric 3D Camera Object 0 0.217988620985 0

Druid 3D Chromatic Camera Object 0 9.53908970233 15.6908970683

Ranger 3D Audio Camera Object 0 7.39615760879 4.1161930811

Necromancer 3D Textual Camera
Object

0 5.10333023369 24.1905458896

Portal Camera Object 0 0 90

(Continued)

160 Event-Database Architecture for Computer Games

Object ID

Y Angular
Position
(Deg.)

Z Angular
Position
(Deg.)

X Angular
Speed
(Deg./
Sec.)

Y Angular
Speed (Deg./

Sec.)

Z Angular
Speed
(Deg./
Sec.)

X Angular
Accel.

(Deg./Sec./
Sec.)

Warrior 3D
Camera Object

351.522036749 0 0 2.37422301443 0 0

Thief 3D
Camera Object

155.461956192 0 0 3.7537878277 0 0

Mage 3D
Camera Object

333.835465487 0 0 1.10940071413 0 0

Cleric 3D
Camera Object

83.2213913219 0 0 4.06993614613 0 0

Druid 3D
Chromatic
Camera Object

224.519865815 0 0 2.7532137655 0 0

Ranger 3D
Audio Camera
Object

357.858153487 0 0 4.4277127777 0 0

Necromancer 3D
Textual Camera
Object

302.861467273 0 0 4.55633690607 0 0

Portal Camera
Object

0 0 0 0 0 0

Object ID
Y Angular Accel.
(Deg./Sec./Sec.)

Z Angular Accel.
(Deg./Sec./Sec.)

Collision
Boundary ID

Proximity Boundary
ID

Warrior 3D Camera
Object

3.5507239459 0 None. Warrior View
Frustum Boundary

Thief 3D Camera
Object

4.24752559143 0 None Thief View Frustum
Boundary

Mage 3D Camera
Object

2.46449710227 0 None Mage View Frustum
Boundary

Cleric 3D Camera
Object

1.82618534137 0 None Cleric View Frustum
Boundary

Druid 3D Chromatic
Camera Object

0.336852112673 0 None Druid View Frustum
Boundary

Ranger 3D Audio
Camera Object

3.13486986431 0 None Ranger View Frustum
Boundary

Necromancer 3D
Textual Camera
Object

1.87158989874 0 None Necromancer View
Frustum Boundary

Portal Camera Object 0 0 None Portal View Frustum
Boundary

TABLE 1.47 (Continued)
Example of 3D Camera Objects Table

(Continued)

161LPmud Software Production Process

Object ID
Collision
Event ID Proximity Event ID

Object Initial Reset
Event ID

Warrior 3D Camera
Object

None Enter Warrior 3D Camera Event Warrior 3D Camera
Reset Event

Thief 3D Camera Object None Enter Thief 3D Camera Event Thief 3D Camera Reset
Event

Mage 3D Camera Object None Enter Mage 3D Camera Event Mage 3D Camera Reset
Event

Cleric 3D Camera Object None Enter Cleric 3D Camera Event Cleric 3D Camera Reset
Event

Druid 3D Chromatic
Camera Object

None Druid Cleric 3D Camera Event Druid 3D Camera Reset
Event

Ranger 3D Audio Camera
Object

None Enter Ranger 3D Camera Event Ranger 3D Camera
Reset Event

Necromancer 3D Textual
Camera Object

None Enter Necromancer 3D Camera
Event

Necromancer 3D
Camera Reset Event

Portal Camera Object None Enter Portal 3D Camera Event Portal 3D Camera Reset
Event

Object ID Object Destroyed Event ID
Projection

Type
Warrior 3D Camera Object Warrior 3D Camera Destroyed Event Perspective

Thief 3D Camera Object Thief 3D Camera Destroyed Event Perspective

Mage 3D Camera Object Mage 3D Camera Destroyed Event Perspective

Cleric 3D Camera Object Cleric 3D Camera Destroyed Event Perspective

Druid 3D Chromatic Camera Object Druid 3D Camera Destroyed Event Chromatic

Ranger 3D Audio Camera Object Ranger 3D Camera Destroyed Event Audio

Necromancer 3D Textual Camera Object Necromancer 3D Camera Destroyed Event Textual

Portal Camera Object Portal 3D Camera Destroyed Event Perspective

Object ID
Projection

Target Projection X Projection Y
Projection

Width
Warrior 3D Camera Object Screen 512 384 1024

Thief 3D Camera Object Screen 512 384 1024

Mage 3D Camera Object Screen 400 300 800

Cleric 3D Camera Object Screen 400 300 800

Druid 3D Chromatic Camera
Object

Screen 512 384 1024

Ranger 3D Audio Camera
Object

Screen 512 384 1024

Necromancer 3D Textual
Camera Object

Screen 512 384 1024

Portal Camera Object Portal
Texture

256 256 512

TABLE 1.47 (Continued)
Example of 3D Camera Objects Table

(Continued)

162 Event-Database Architecture for Computer Games

You can see an example of this Database Table in Table 1.48.

1.4.45 D atabase Tag Table

The next Database Table would hold Database Tag Records. These are another
form of Database Meta Data Records. Each Record would list the Database
Records and Database Fields that were tagged with special properties.

For example, when playing a multiplayer game on a computer network, on sev-
eral computers or Game Peers, in a Peer-To-Peer Network Architecture, these
Records would list the other Database Records or Database Fields that should or
should not be replicated on each Peer across the network.

Another example is when saving or writing the current state of a game to a file,
one of these Records or SAVE GAME LIST RECORD would list all the other
Records whose contents should be saved to that file. And this list would be used

Object ID
Projection

Height
Field Of

View (Deg.)
Near Focal

Length
Far Focal
Length

Warrior 3D Camera Object 768 60 1 100

Thief 3D Camera Object 768 60 1 100

Mage 3D Camera Object 600 60 1 100

Cleric 3D Camera Object 600 60 1 100

Druid 3D Chromatic Camera Object 768 60 1 100

Ranger 3D Audio Camera Object 768 60 1 100

Necromancer 3D Textual Camera Object 768 60 1 100

Portal Camera Object 512 60 1 100

Object ID Device Group ID
Warrior 3D Camera Object Joystick1:192.168.0.1:Player1:PassP11234:UGxhe

WVyMTpQYXNzUDExMjM0Cg==

Thief 3D Camera Object Keyboard1:192.168.0.1:Player2:PassP21234:UGx
heWVyMjpQYXNzUDIxMjM0Cg==

Mage 3D Camera Object Joystick2:192.168.0.2:Player3:PassP35678:UGxhe
WVyMzpQYXNzUDM1Njc4Cg==

Cleric 3D Camera Object Keyboard2:192.168.0.2:Player4:PassP45678:UGx
heWVyNDpQYXNzUDQ1Njc4Cg==

Druid 3D Chromatic Camera Object Gamepad1:192.168.0.3:Player5:PassP591011:UG
xheWVyNTpQYXNzUDU5MTAxMQo=

Ranger 3D Audio Camera Object Gamepad2:192.168.0.4:Player6:UGxheWVyNjpQ
YXNzUDYxMjEzMTQK

Necromancer 3D Textual Camera Object Gamepad3:192.168.0.5:Player7:PassP7151617:U
GxheWVyNzpQYXNzUDcxNTE2MTcK

Portal Camera Object Empty

TABLE 1.47 (Continued)
Example of 3D Camera Objects Table

163LPmud Software Production Process

when loading or reading back the old state of the game, from that file to the other
Records whose contents were used to save the state.

You can see an example of this Database Table in Table 1.49.

1.4.46 D atabase Monitor Table

The next Database Table would hold Database Monitor Records. Each Record
would hold the Primary Key of another Record whose changes would be monitored,
and a Database Log Record that would contain these changes. This information
would be used to run tests and monitor when errors entered the Database.

You can see an example of this Database Table in Table 1.50.

1.4.47 D atabase Log Table

The next Database Table would hold Database Log Records. Each Record would
hold the times a monitored Database Record was modified, the Fields that were
modified at each time and the old values of the Fields before these were modified.

You can see an example of this Database Table in Table 1.51.

TABLE 1.48
Example of a Database Checksum Table

Checksum ID Object ID Checksum
Warrior 2D Player Object Checksum Warrior 2D Player Object 46

Thief 2D Player Object Checksum Thief 2D Player Object 41

Mage 2D Player Object Checksum Mage 2D Player Object 84

Cleric 2D Player Object Checksum Cleric 2D Player Object 43

TABLE 1.49
Example of a Database Tag Table

List ID Replicated Fields
Replication Tag List Warrior’s 2D Player Object, Thief’s 2D Player

Object, Mage 2D Player Object, Cleric 2D
Player Object

X, Y, Angular Position

List ID Non-Replicated Fields
Non-Replication Tag List Warrior’s 2D Player Object, Thief’s

2D Player Object, Mage 2D Player
Object, Cleric 2D Player Object

X Speed, Y Speed, X Accel.,
Y Accel., Angular Speed,
Angular Accel

List ID Saved Fields
Saved Game List Warrior’s 2D Player Object, Thief’s 2D

Player Object, Mage 2D Player Object,
Cleric 2D Player Object

X, Y, Angular Position,
Experience, Used Inventory,
Carried Inventory, Health

164 Event-Database Architecture for Computer Games

1.4.48 V isualising the Database

Unlike a typical hierarchical Database developed in a Software Evolution Process
used in the Computer Games industry, which is so complex it cannot be visualised, the
Game Database of the Event-Database Production Process can be visualised. This
benefit alone, to the communication of the staff involved in the production process,
notwithstanding any other advantages the Event-Database Architecture has, makes it
unique and priceless. This visualisation can be done through an Entity-Relationship
Diagram.35 This would show all the different types of items or entities in the Database,
and the relationships which each one shared with another. And this, in turn, would give
any of the staff, especially the Database Administrator, an opportunity to assess the
language they were using in the production process. They could assess, for example, any
ambiguities or inconsistencies in this language. And they could assess whether some of
the items should be stored in the Database at all; that is, whether some of the words
should be included in the language. These would be the names of categories of items or
entities which shared no relationship with any other entity.

The keywords of the language of the Event-Database Production Process are
the names given to entities in the Game Database. If the keywords were deficient in
some way, then this would result in confusing Entity-Relationship Diagrams which
did not make any sense. If the keywords were too long, then this would result in
diagrams which cannot contain those words. If the keywords were too short and
ambiguous, then this would result in diagrams which were also ambiguous.

You can see the Entity-Relationship Diagram for the Events in the Game
Database in Figure 1.32.

You can see the Entity-Relationship Diagram for the Text Objects in Figure 1.33.

TABLE 1.50
Example of a Database Monitor Table

Monitor ID Monitored Logs
Player Monitor Warrior’s 2D Player Object, Thief’s

2D Player Object, Mage 2D Player
Object, Cleric 2D Player Object

Warrior’s 2D Player Log, Thief’s 2D
Player Log, Mage 2D Player Log,
Cleric 2D Player Log

TABLE 1.51
Example of a Database Log Table

Log ID Modification Times Modified Fields Modified Values
Warrior’s 2D Player Object
Log

359.15, 359.15,
465.59, 465.59, 493.46,

493.46

X,Y, X,Y, X,Y 250.335757441,
154.085106948,
141.789456083,
66.5226632345,
296.795780459,
183.006590054

165LPmud Software Production Process

FIGURE 1.33  Entity-Relationship Diagram of Text Objects of LPmud.

FIGURE 1.32  Entity-Relationship Diagram of Primary and Secondary Events of LPmud.

166 Event-Database Architecture for Computer Games

You can see the Entity-Relationship Diagram for the Animation Objects in
Figure 1.34.

You can see the Entity Relationship Diagram for the 2D Game Objects in
Figure 1.35.

You can see the Entity-Relationship Diagram for the 3D Game Objects in
Figure 1.36.

You can see the Entity-Relationship Diagram for Game Object Attributes in
Figure 1.37.

You can see the Entity-Relationship Diagram for other queues in Figure 1.38
You can see the Entity-Relationship Diagram for the queues of Game Objects in

Figure 1.39.
You can see the Entity-Relationship Diagram for Sound Microphones, Sound

Streams and Game Objects in Figure 1.40.
You can see the Legend for the symbols in all these diagrams in Figure 1.41.
These diagrams are very useful. For example, you can see from these dia-

grams that Game Object Attributes are ambiguous and need a better defini-
tion. All other entities in the Game Database occur in two or more diagrams.
But the Game Object Attributes occurs only in one diagram. For although these
were mentioned all the way back in Chapter 3.3 Objects Host in the book

FIGURE 1.34  Entity-Relationship Diagram of Animation Objects of LPmud.

167LPmud Software Production Process

Event-Database Architecture for Computer Games Volume 1, these have
not been mentioned since. Game Object Attributes are basically properties or
Database Fields of Game Objects which are put on queues. And used by a huge
variety of Game Objects and Host Modules. From the Master Object, Physics
Host, Graphics Host, Events Host to the Objects Host. Some of the members
of this set are not obvious. Take for example, the Game Object Code Fields.

The queue of the Objects List Record keeps a list of all the Game Objects that
should be loaded into computer memory by the Objects Host. Before the Objects
Host executes the code in the Game Object Code Field of each of these Game
Objects in response to a Secondary Event. So that queue of Game Objects is in
fact a queue of Game Object Code Fields. Therefore that Game Object Code Field
should be classed as a Game Object Attribute.

FIGURE 1.35  Entity-Relationship Diagram of 2D Game Objects of LPmud.

168 Event-Database Architecture for Computer Games

FIGURE 1.36  Entity-Relationship Diagram of 3D Game Objects of LPmud.

FIGURE 1.37  Entity-Relationship Diagram of queues of Game Object Attributes of
LPmud.

169LPmud Software Production Process

1.4.49 E numerating the Language of the Production Process

Of course, the game design of LPmud is not complete. A complete game design
would include an exact description of the Game World. This would include exactly
what the composition of the locations in the Game World was going to be. And
it would include the exact figures of the number of characters and other items in
each location, where these would appear, whether these could be moved, how these
would be moved, the sizes and the appearances of the locations, the characters and
other items.

FIGURE 1.38  Entity-Relationship Diagram of conversions between queues and other enti-
ties in LPmud.

170 Event-Database Architecture for Computer Games

FIGURE 1.40  Entity-Relationship Diagram of Sound Microphones, Sound Streams, and
Game Objects.

FIGURE 1.39  Entity-Relationship Diagram of queues of Game Objects of LPmud.

171LPmud Software Production Process

Similarly, a complete game design would include an exact description of the
User Interface. This would include exactly what the composition of the menus,
commands, groups of commands and combination of analogue devices and digi-
tal devices, in the Interface that executed the commands, was going to be. And it
would include exact figures of the number of items in each menu, the commands
in each group and the number of devices in each combination. It would include
where these would be used in the game, how these would be used, whether the
items on a menu could move, how these would move, the size and the appearance
of these items.

Since the game design is not complete, the technical design and the data design
for it are also not complete. The designs do not include the details of the Game
Object of every unique group of items lying around, characters, creatures, build-
ings, other structures or locations in the Game World. Nor do the designs include
the details of the Game Object of every unique group of items or menus in the User
Interface.

Despite this, and the fact that this would be only the beginning of the production
process, a lot of new words have already been introduced. In fact, over 200 words
have been introduced, from a single source i.e. the Event-Database Architecture.
Over 200 words that any of the staff would have to understand in order to engage in a
discussion with others, about any aspect of the software architecture. This excludes
the common terms and phrases that would be used, in the Software and Computer

FIGURE 1.41  Legend of symbols used in the Entity-Relationship Diagrams and what these
represent.

172 Event-Database Architecture for Computer Games

Games industry, to describe the technology used in a production process. These new
words were the following, in alphabetical order:

1.	2D Animation Object
2.	2D Camera List
3.	2D Camera Object ID
4.	2D Camera Object Record
5.	2D Image Object
6.	2D Player Object Records
7.	2D Player Objects
8.	2D Polygon ID
9.	2D Polygon Record

10.	3D Animation Object
11.	3D Camera List
12.	3D Camera Object ID
13.	3D Camera Object Record
14.	3D Model ID
15.	3D Model Object
16.	3D Model Record
17.	3D Player Object Records
18.	3D Player Objects
19.	Absents List Record
20.	Actions
21.	Analogue History Field
22.	Analogue Positions Field
23.	Animated Vertices
24.	Animation ID
25.	Armour Class
26.	Audio Projection
27.	Backwards Command
28.	Camera List Record
29.	Camera Object
30.	Central Host
31.	Chromatic Projection
32.	Client Server Network Architecture
33.	Controller Central Field
34.	Controller Maximum Field
35.	Controller Minimum Field
36.	Controller Type Field
37.	Database Checksum Records
38.	Database Host
39.	Database Log Record
40.	Database Meta Data Records
41.	Database Monitor Record
42.	Database Tag Records
43.	Deep Learning Model

173LPmud Software Production Process

44.	Delayed 2D Physics List Record
45.	Delayed 3D Physics List Record
46.	Delayed Events List Record
47.	Depth Coordinate
48.	Device Group Field
49.	Device Group Record
50.	Device Mapping Field
51.	Device Sequence Primary Events Record
52.	Digital History Field
53.	Digital Positions Field
54.	Drop Command
55.	Error Record
56.	Escort Quest Handler Object
57.	Event-Database Architecture
58.	Event-Database Production Process
59.	Events
60.	Events History Record
61.	Events Host
62.	External Database Host Query Custom Tool
63.	External Events Host Custom Tool
64.	Find Quest Handler Object
65.	Forwards Command
66.	Game Clients
67.	Game Controller Object Field
68.	Game Controllers Host
69.	Game Database
70.	Game Object Attributes
71.	Game Object Code Field
72.	Game Object Records
73.	Game Objects
74.	Game Peer
75.	Game Server
76.	Game Time ID
77.	Game Time Record
78.	Get Command
79.	Give Command
80.	Graphic Object ID
81.	Graphics Host
82.	Graphics List Record
83.	Graphics Object
84.	Graphics Object Record
85.	Heartbeat Event
86.	Host Modules
87.	Initial Reset Event Record
88.	Internal Database Host Query Custom Tool
89.	Internal Events Host Custom Tool

174 Event-Database Architecture for Computer Games

90.	Inverse Kinematic Physics
91.	Inverse Kinematics
92.	Invisible 2D Point Object
93.	Invisible 3D Point Object
94.	Isometric Projection
95.	Jump Down Command
96.	Jump Up Command
97.	Kill Command
98.	Kill Quest Handler Object
99.	Language Learning Model

100.	List ID
101.	List Record
102.	Loaded
103.	Loaded Event
104.	Load Game Object
105.	Look Command
106.	LPC code
107.	LPC Custom Tool
108.	Master Object
109.	Master Physics Object
110.	Master Physics Object Record
111.	Master Player Object
112.	Master Player Object Record
113.	Master Sound Speaker Object
114.	Master Sound Speaker Object Record
115.	Microphone Offset X Field
116.	Microphone Offset Y Field
117.	Microphone Offset Z Field
118.	Moved Event
119.	Multi-user Distributed Form
120.	Neural Network
121.	Neural Network Activation Function
122.	Neural Network Back Propagation
123.	Neural Network Back Propagation Adjust Weights nnnn Layer D

Neuron xx Event
124.	Neural Network Back Propagation Adjust Weights nnnn Layer Zyyyy

Neuron xx Event
125.	Neural Network Back Propagation Input Losses nnnn Layer D Neuron

xx Event
126.	Neural Network Back Propagation Input Losses nnnn Layer Zyyyy

Neuron xx Event
127.	Neural Network Back Propagation Output Losses nnnn Layer D

Neuron xx Event
128.	Neural Network Bias
129.	Neural Network Final Outputs
130.	Neural Network Forward Propagation

175LPmud Software Production Process

131.	Neural Network Forward Propagation Inputs nnnn Layer D Neuron
xx Event

132.	Neural Network Forward Propagation Inputs nnnn Layer X Neuron
xx Event

133.	Neural Network Forward Propagation Inputs nnnn Layer Zyyyy
Neuron xx Event

134.	Neural Network Forward Propagation nnnn Fetch Metrics From
Game World Event

135.	Neural Network Forward Propagation nnnn Fetch Metrics From
Training Data Event

136.	Neural Network Forward Propagation Output nnnn Layer D Neuron
xx Event

137.	Neural Network Forward Propagation Output nnnn Layer Zyyyy
Neuron xx Event

138.	Neural Network Forward Propagation Translate Output nnnn Event
139.	Neural Network Initial Inputs
140.	Neural Network Neuron Input Weight
141.	Neural Network Neuron Output
142.	Neural Network Training Data
143.	Object Attacked Event
144.	Object Dead Event
145.	Object Destroyed Event
146.	Object Dropped Event
147.	Object Entered Event
148.	Object Exited Event
149.	Object Heard Event
150.	Object Heartbeat Event
151.	Object ID
152.	Object Initial Reset Event
153.	Object Inventory Event
154.	Object Looked Event
155.	Object Moved Event
156.	Object Pacified Event
157.	Object Periodic Reset Event
158.	Objects Failed List Record
159.	Objects Failed Times List Record
160.	Objects Host
161.	Objects List Record
162.	Object Taken Event
163.	Object Unused Event
164.	Object Used Event
165.	Orthographic Projection
166.	Owner Field
167.	Peer-To-Peer Network Architecture
168.	Periodic Reset Event
169.	Perspective Projection

176 Event-Database Architecture for Computer Games

170.	Physics Host
171.	Physics Inverse Kinematics nnnn Bone yy xx Angle Arm To Reach

Target Event
172.	Physics Inverse Kinematics nnnn Bone yy xx Angle Leg To Reach

Target Event
173.	Physics List Record
174.	Physics Object Record
175.	Physics Ragdoll nnnn Bone yy xx First Pass Detect Forces On Bone

Event
176.	Physics Ragdoll nnnn Bone yy xx First Pass Generate Forces On Bone

Event
177.	Physics Ragdoll nnnn Bone yy xx Second Pass Detect Forces On Bone Event
178.	Physics Ragdoll nnnn Bone yy xx Second Pass Generate Forces On

Bone Event
179.	Physics Ragdoll nnnn Bone yy xx Third Pass Resolve Forces On Bone

Event
180.	Physics Vortex nnnn Particle yyyy Collision Event
181.	Physics Vortex nnnn Particle yyyy Spawn Event
182.	Physics Vortex nnnn Particle yyyy Angular Acceleration Event
183.	Point Object Record
184.	Primary Collision Event
185.	Primary Collision Event Record
186.	Primary Connect Event
187.	Primary Connect Event Record
188.	Primary Controller Moved Event
189.	Primary Controller Moved Event Record
190.	Primary Controller Pressed Event
191.	Primary Controller Pressed Event Record
192.	Primary Controller Released Event
193.	Primary Controller Released Event Record
194.	Primary Controller Stopped Event
195.	Primary Controller Stopped Event Record
196.	Primary Disconnect Event
197.	Primary Disconnect Event Record
198.	Primary End Event
199.	Primary Event Record
200.	Primary Events
201.	Primary Initial Reset Event
202.	Primary Neural Network Back Propagation nnnn Event
203.	Primary Neural Network Forward Propagation nnnn Event
204.	Primary Physics Inverse Kinematics nnnn Event
205.	Primary Physics Ragdoll nnnn Event
206.	Primary Physics Vortex nnnn Acceleration Event
207.	Primary Physics Vortex nnnn Spawn Event
208.	Primary Projection Event
209.	Primary Proximity Event

177LPmud Software Production Process

210.	Primary Proximity Event Record
211.	Primary Reflection Event
212.	Primary Shutdown Event
213.	Priority End Events Record
214.	Priority Events List Record
215.	Procedurally Generated Quest System
216.	Projected List
217.	Projected List Records
218.	Projected Shapes
219.	Projected Shapes Records
220.	Projection ID
221.	Projection Target Field
222.	Quest Complete Event
223.	Quest Giver Object
224.	Quest Lost Object
225.	Quest Marker Objects
226.	Quest Prompt Object
227.	Quest Receiver Object
228.	Quest Spline Object
229.	Quest Splines Complete Event
230.	Quest Splines Generator Object
231.	Quest Target Object
232.	Quest Waypoints Object
233.	Quit Command
234.	Ragdoll Physics
235.	Random Seed
236.	Remove Command
237.	Residents List Record
238.	Resurrect Command
239.	Saved
240.	Save Game List Record
241.	Save Game Object
242.	Say Command
243.	Secondary Connect Event
244.	Secondary Connect Event Record
245.	Secondary Controller Moved Event
246.	Secondary Controller Moved Event Record
247.	Secondary Controller Pressed Event
248.	Secondary Controller Pressed Event Record
249.	Secondary Controller Released Event
250.	Secondary Controller Released Event Record
251.	Secondary Controller Stopped Event
252.	Secondary Controller Stopped Event Record
253.	Secondary Disconnect Event
254.	Secondary Disconnect Event Record
255.	Secondary End Event

178 Event-Database Architecture for Computer Games

256.	Secondary Event Record
257.	Secondary Events
258.	Secondary Reflection Event
259.	Shout Command
260.	Shutdown Event Record
261.	Single User Monolithic Form
262.	Single User Multi-threaded Form
263.	Sound Microphone ID
264.	Sound Microphone Object
265.	Sound Microphone Object Record
266.	Sound Object Field
267.	Sound Radius
268.	Sounds Host
269.	Sound Speaker Object
270.	Sound Speaker Secondary Events Record
271.	Sounds Played List Record
272.	Sound Stream ID
273.	Sound Stream Records
274.	Sounds Waiting List Record
275.	Stage Objects List Records
276.	Tell Command
277.	Text ID
278.	Text Localisation Record
279.	Text Object
280.	Textual Projection
281.	Texture Coordinate ID
282.	Texture Coordinate Record
283.	Texture ID
284.	Texture Record
285.	Turn Left Command
286.	Turn Right Command
287.	Unloaded Event
288.	Virtual Machine
289.	Vortex Physics
290.	Weapon Class
291.	Wear Command
292.	Wield Command

Consider the academic fields where these words originate from i.e.

Mathematics
Computer Science
Electronic Engineering
Physics
Design (Illustration, Animation and Digital)
Audio Engineering

179LPmud Software Production Process

Game Design (Design, Mathematics and Computer Science)

These are studied by

Game Programmers (Mathematics and Computer Science)
Game Artists (Illustration, Animation and Digital Design)
Game Designers (Digital Design, Mathematics and Computer Science)
Sound Designers (Audio Engineering).

However, these are the academic fields whose words you would expect to be in the
language of the production process but are absent:

Software engineering
Creative Writing
Project Management

Software engineering is the study of a systematic approach to the software pro-
duction process, the planning, the implementation and testing, for Quality Control
or Quality Assurance. You would expect the Game Programmers, Game Testers and
Game Producers to have studied this subject.

Creative Writing is the study of creating narratives and stories. You would expect
that there would be someone involved in the production who have studied this sub-
ject. Since this seems essential to building a Game World or a game design.

Project Management is the study of how to lead a project to achieve its goals
within a set of constraints. The primary constraints being scope, time and budget.
You would expect Game Producers to have studied this subject.

Creative Writers are not the only staff, in the Computer Games industry, whose
words you would expect to be reflected in the language of the production process.
But yet these words are absent. Given the academic fields whose words are, or you
would expect to be reflected, in language of the production process, there are several
staff who are normally absent in the Computer Games industry. These include

Pure Mathematicians
Pure Physicists
Pure Software Engineers
Electronic Engineers
Technical Authors
Fictional Authors

Instead of the staff being comprised of such professionals, typically in the
Computer Games industry, in a staff of about 60 working on a project, only 15 would
be Game Programmers, 40 would be Game Artists, 2 would be Game Designers, 2
would be Game Testers and 1 would be a Game Producer.

The representation of Mathematicians is very low amongst the staff. There are no
Pure Mathematicians. And the closest comes in the form of the Game Programmers
whose numbers are relatively low. Despite the fact the representation of the words

180 Event-Database Architecture for Computer Games

from Mathematics in the language of the production process is very high. Almost all
of the entities in the Game Database just described have a relationship to geometry.
Either through the physics, rendering or sounds of Game Objects, which all have
geometry.

All of these observations, the disproportionately high number of words originat-
ing from Mathematics, the absence of words from the academic fields studied by
Game Producers and Game Testers, the absence of words from software engineer-
ing, Creative Writing and Project Management, the absence of Pure Mathematicians,
Physicists, Software Engineers, Electronic Engineers, Technical Authors, Fictional
Authors amongst the staff, are all signs that there is something fundamentally wrong
with the language. At least at the beginning of the software production process of
the game LPmud. And if you assume that this language is typical in the Computer
Games industry, then it would suggest that there is something fundamentally wrong
with the language of production process of all games in the industry.

Nonetheless, these observations are only obvious in the Event-Database Production
Process due to the Event-Database Architecture. The data design of the Game
Database is the dictionary that makes it possible to make these observations.

However, in the Software Evolution Process normally used in the industry, none
of these observations are obvious. In that process, the words of the language would
not come from a single source. Instead, these words would come from an eclectic
set of multiple sources. As has already been explained, these sources would include
the different members of staff, their varied backgrounds and interests. And these
sources would also include the software architecture of the process used. Remember
that the process would only have two principles, in theory. Firstly, that it slowly
evolves and grows software over time. And secondly, that the basis of this evolution
was feedback from the software user.

But as time passed, the feedback from the software user would change, and thus
would the software architecture. The components of the software would change
depending on this feedback, and the relationship between these components would
also change. And part of the words of the language of the overall production process
would come from each of these transient architectures. And the eclecticism of these
sources would be compounded by the lack of any single item that collated all the
definitions of the words. No one architecture, no one member of staff, no one tool,
nor any other single component of a Software Evolution Process, could be relied
upon for the definition of even half of the words used in the process.

1.5  STEP 5: LPmud TOOLS DESIGN

The next step of the Event-Database Process is the tools design. You can see the
vision for the tools in Figure 1.42.

The tools that would be used to build the game LPmud would be the same as the
tools used to build the archetypal game based on the Event-Database Architecture.
This has already been described in a book called

The Event-Database Architecture for Computer Games: Volume 1, Software
Architecture and the Software Production Process.

181LPmud Software Production Process

The tools have already been described in the subchapter in that book entitled

Step 5: Tools Design.

In addition to the tools described there, there would be other custom tools
described in Table 1.52.

The Internal Events Host Custom Tool would be like the External Events Host
Custom Tool used to build the archetypal game. But it would be built into the game
from the Game Objects of the Event-Database Architecture. It would help test the

FIGURE 1.42  An example of a cover page for a tools design to build a computer game
LPmud.

TABLE 1.52
Table of Custom Tools for LPmud

Name Description Staff Copies
Internal Events Host
Custom Tool

Manually fires Primary and
Secondary Events

Game Testers 2

LPC Custom Tool Adds locations, characters or items
to the Game World

Game Programmers
Game Designers

22

Internal Database
Host Query
Custom Tool

Scans the current location for the
visible and invisible Objects in
the Game World

Game Programmers
Game Designers
Game Testers

22

182 Event-Database Architecture for Computer Games

game at the end of the production process. This tool would only be available in the
debug version of the game, to all the players, and only to Wizards in the final version
of the game. By issuing a special command, at any stage of the game, through the
Game Controllers, this item would appear in the inventory of the player’s character.
And by issuing a second command, the player could make that item disappear.

When it appeared, the tool would immediately present the player with a menu,
listing the IDs or names of all the other visible items in that location. And the player
would choose one name from the menu. After the player had chosen one of the names,
the tool would present a second menu with the names of all the Secondary Events,
which the Game Object of that item could receive. And when the player had chosen
one of these names, the tool would send that Secondary Event, to that Game Object,
to test the response. If the Game Object sent a Primary Event, in response, the tool
would detect this from the Events History Record, and display a message informing
the player of the name of that Primary Event. And it would inform the player of the
Secondary Events following on from that Event. After a few seconds, the tool would
display the first menu once again. So that the player could repeat the cycle, with the
same Secondary Event or a different one. But once the player had had enough, and
discarded the tool, all of its menus and messages would disappear from view.

Thus, by experimenting with this tool, the player could find out all the chain of
Events in any location in the Game World. And ultimately, the player could uncover
all the possible chain of Events in the game. This information could be used to test
the technical design of LPmud, exhaustively, at the end of the production process.

The LPC Custom Tool has already been referred to, in the game design of LPmud.
Namely, this required a tool that allowed the highest level players or Wizards to edit
the Game World. This would be used to add new domains, once the players’ scores
had surpassed the highest level recognised by the game. This tool would be built into
the game, from one or more Game Objects.

This tool would appear as another item, in the inventory of a player’s character,
once that character’s score had reached the highest level. It would have no weight.
Nor would it have any value in the shops and markets of the Game World. And there-
fore could not be bought or sold. And it would not be possible for the player to drop
that item. As soon as the tool appeared, it would briefly display a message for a few
seconds, congratulating the player for achieving the level of a Wizard. And it would
inform the player that he or she could now add new locations to the Game World and
edit these locations. The player would then be shown a second message, which would
list the new commands that the player could use. The player could select any item on
this menu, using the Game Controllers.

Next to each command would be a brief description of what that command did. At
the bottom of this menu would be a command which the player could use to discard
the menu and stop editing the Game World. However, the tool would not disappear
from the player’s inventory and player could bring back the menu, at any time in the
future, by issuing a special command, through the User Interface of the tool.

There would be six options in all, on this menu, for editing the Game World. The
first three would, respectively, add new locations, new characters or other new items
to the Game World. This would include adding the new Game Object and Game
Object Record for each new item. The number and type of Fields in the Record

183LPmud Software Production Process

would vary depending on the properties of the Game Object. But each Record
would have at least the following Database Fields:

1.	a Primary Key
2.	a Game Object Code Field
3.	an OWNER FIELD

The Owner Field would contain the name of the player who created it. The Game
Object Code Field would contain pseudo machine code or LPC code translated or ‘com-
piled’ from words written in the LPC programming language, by the player, and entered
using submenus presented by the tool. This programming language would be the same as
the one used to write Objects in the software architecture of LPmud. The Actions for the
Secondary Events received by this new Object would be executed by the Objects Host
using the LPC code and a Virtual Machine. Like any other Action this would either edit
Database Records or generate Primary Events. But when this Machine encountered
any errors in the LPC code, the Objects Host would display the error on the screen
and shut down the Machine without causing the game to be shut down. Each new loca-
tion would be added adjacent to the player’s current location. Provided, that is, either the
player had created that location, or the player had not added any new locations, and there
was space for the new location. If a new Wizard did not own any locations in the Game
World, then they may ask another Wizard to add a new location, and transfer ownership
to the new Wizard. It follows on from this, that the game must begin with at least one
Wizard. And that the LPC Custom Tool must give you the option of transferring owner-
ship of a location you create to another Wizard. Each new character added would be an
NPC that would be controlled by the computer. This character, along with any other item,
would be added to the player’s current location, directly in front of the player’s view.

The next three options, on the menu, would, respectively, edit locations, charac-
ters or other items already in the Game World. Each location edited would be the
player’s current location. Provided, that is, the player created that location. Likewise,
each NPC, or other items edited, would be one in the player’s location. It would also
have to be one that the player had created.

Whenever the player chose any one of the six options on this menu, the player
would be presented with further submenus. And the player would progressively
define the properties of each new location, character or other items, through the
options on these menus. These would include

1.	size
2.	colour
3.	shape
4.	health
5.	size of inventory
6.	money in inventory
7.	other items in inventory
8.	 items being worn
9.	 items being wielded

10.	 items being used

184 Event-Database Architecture for Computer Games

11.	 items’ weight
12.	 items’ value in the shops
13.	 level of hostility or friendliness
14.	LPC Code

In addition, through these menus, the player would define the areas within the
Game World, through which each new character or other items would move; if that
were possible. The player would select two or more locations, some of which may not
have been created by the player. And the tool would set up the Waypoints between
these locations that the character would follow. The character would then start to
immediately move between these locations. But if the player wanted to, he or she
could change this route. Or the player could remove that character entirely, through
one of the options available on the menus of the tool.

The Internal Database Host Query Custom Tool has already been referred to
in the technical design. In the description of the system of Game Objects, which
would be used to build the game design of LPmud, there was a requirement for each
Object to be placed in the Game World. Each visible and invisible Game Object had
to be placed amongst the contents of the location, character or other items, within
which it was used. So that a tool could be developed that would help debug any con-
tainer, by revealing the identity of all the Game Objects within it. This would help
any member of the staff, developing the game, identify all the software components
that could be responsible for any errors evident in that container.

The tool itself would be made up of one or more Game Objects. It would only
be available, in the debug version of the game, to all the players, and in the final ver-
sion of the game only to the highest level players or Wizards. Once the player had
issued a special command, through the Game Controllers, the tool would appear in
the inventory of the player’s character. Like the previous tool, it too would have no
weight nor value. And it could not be dropped by the player.

The player would be presented with the list of the names, of all the visible items
in that player’s location, when the tool appeared. This would include the name of
the location itself. And the player could select one of these names, using the Game
Controllers. Once the player had selected one, the tool would present a list of the
IDs of all the visible, and invisible items, contained within that item. If one of these
contents in turn contained further items, these would not be displayed. Until, that is,
the player selected the ID of this item, from the second menu. The tool would keep
on displaying the contents of each item selected by the player, on subsequent menus,
until one was selected which was empty. At which point, the tool would disappear
from the inventory of the player’s character, along with all of its menus from the
player’s view.

NOTES
	 1.	 LPmud. Lars Pensjö’s Multi-User Dungeon. Any of a large class of multi-user adven-

ture games built using the software architecture created by Lars Pensjö. See Glossary.
	 2.	 Quality Control. A system that accepts or rejects products or services depending on

whether these meet all of the customer’s specifications and requirements.

185LPmud Software Production Process

	 3.	 Software architecture. A description of a system for producing software. It includes
a description of the components of the system, the relationship between these compo-
nents and the principles that govern how these components change. See Glossary.

	 4.	 The Software Production Process. The steps for designing and implementing a game,
using the Event-Database Architecture. See the chapter entitled The Software Pro-
duction Process in the book The Event-Database Architecture for Computer Games:
Volume 1, Software Architecture and the Software Production Process.

	 5.	 Game World. An imaginary world space in which a game takes place.
	 6.	 Quality. The characteristic of a product which meets a customer’s needs.
	 7.	 LPC. Lars Pensjö’s C. A programming language, modelled on the language ‘C’,

designed to allow you to modify the behaviour of items in the Game World of mul-
ti-user adventure games.

	 8.	 Artificial Intelligence. An attempt to model the human brain or to create a system that
can make deductions. See Glossary.

	 9.	 Technical design sources. Game Programming Gems by Mark De Laura.
	 10.	 Incomplete game design. A description of a game which consist of just enough high-

lights to sell a project to its financial backer, but not enough detail to implement it.
	 11.	 UML. Unified Modelling Language. A language for describing the software compo-

nents of a computer system.
	 12.	 Failsafe. A computer software or hardware system that can continue operating despite

the persistence of errors within it.
	 13.	 Abstraction. The simplification of a problem by concentrating on essential aspects and

ignoring the rest.
	 14.	 Collision boundary. The area around a Game Object which would be used to deter-

mine its collision with other Objects.
	 15.	 Proximity boundary. The set area around a Game Object which would be used to

determine when another Object was, or was not, in close proximity.
	 16.	 Field of View. The visible area in front of a camera.
	 17.	 Near and Far focal length. The closest and furthest distance of the visible area in front

of a camera.
	 18.	 Waypoint. A point along a path.
	 19.	 Illusion of Intelligence sources. Programming Game AI by Example by Mat Buckland.
	 20.	 Artificial Neural Network. Computer software used to make intelligent decisions,

whose design was inspired by the study of animal brains. It is made up of a network of
very simple software processors, connected by one-way communication channels.

	 21.	 Neuron. A nerve cell adapted to conducting electrical impulses, in the human brain.
	 22.	 Artificial Neuron. A mathematical model of a biological neuron. Each as multiple

numerical parameters or inputs and a single output. It has a mathematical formula
called an Activation Function which takes the sum of the inputs and produces a single
output. In theory, the inputs represent information from human senses such as taste,
sight, hearing, smell and touch. In practice, the inputs are metrics or measurements
gathered from a real or imaginary space, by humans or computers, which represent an
aggregation of information from human senses.

	 23.	 Expensive Graphics Processors. Graphics Processors are made up of several special-
ised maths processors running in parallel. These were originally used to perform the
calculations required to render 3D graphics to achieve Photorealism. But lately these
have also proved ideal for performing the parallel calculations in Artificial Neurons,
and propagating the results forwards and backwards through the layers of an Artificial
Neural Network. The demand for Photorealism and Artificial Neural Networks has
increased the price of these Processors to ridiculous levels. See Glossary.

	 24.	 Expensive erroneous Language Learning Models. Expensive large Language Learn-
ing Models, such as ChatGPT Web Server, still produce unforeseen, unfeasible or pro-
hibited results from time to time. And they still cannot solve basic mathematical and
logical problems. See Glossary.

	 25.	 Neural Network sources. Introduction to Neural Networks by Kevin Gurney.

186 Event-Database Architecture for Computer Games

	 26.	 Flaws of Photorealism. There are many flaws in the Photorealism of computer games
which the Software Developers have to strive continuously to overcome. Despite
advances in the Graphics Processors, and the Hardware Rendering processes these
perform to try to achieve Photorealism. See Glossary.

	 27.	 Rendering Farms. A cluster or network of computers across which a software ren-
dering process is distributed to produce Photorealistic images. Typically for film or
TV industries. Any company that offers these computers as a service is also called a
Rendering Farm.

	 28.	 Data design. A description of all the data needed by a game. It is also a description of
all the data produced by the tools used to build a game.

	 29.	 Unit of game time. The assumed minimum time between successive updates of a Host
Module. The real time may exceed this limit, because the total time it takes to update
all of the modules may be too long.

	 30.	 RGBA. A data format for describing the colour of a pixel by four values, for its Red,
Green, Blue and a special Alpha component. The last of these controls how it blends
with the colour of any underlying image.

	 31.	 Graphic Shaders. Machine code, which is executed during the Hardware Rendering
process of a Graphics Processor, which controls how a surface or vertices of a polygon
is rendered on the computer screen or in a Texture.

	 32.	 Vertex Shader. A Graphic Shader that is used to perform the projection of the vertices
of the polygons of 2D images or 3D models, through a camera, into Normalized space
(an area which is 1 × 1 × 1) and then onto screen space (i.e. the computer screen). And
it is used to set the amount of lighting at each vertex.

	 33.	 Geometry Shader. A Graphic Shader that is optional. It is used to take either the 2D
or 3D primitives from the Vertex Shader and produce another primitive, adding or
removing vertices. Or for rendering multiple images of the same primitive, at once, to
the same target (i.e. computer screen or Texture). Or for feeding back information about
the vertices of the primitives produced by the Vertex Shader, to later steps.

	 34.	 Fragment Shader. A Graphic Shader that is optional. It parses the pixels of the Tex-
tures of the polygons of 2D images or 3D models, after Rasterization. And it can change
the depth and colour of the pixels depending on some kind of formula. And it can also
discard pixels and stop these being rendered dependent on another formula.

	 35.	 Entity-Relationship Diagram. A diagram which shows all the items (or entities) stored
in a Relational Database, and the relationship between these items.

187DOI: 10.1201/9781003502807-2

2 Consistent Data Design

In the Computer Games industry, it is commonplace for tools and software mod-
ules to be built with a good, consistent Interface; either User Interface or Software
Programming Interface. At least, the benefits of a consistent Interface, with regard
to simplicity and ease-of-use, is widely appreciated. Many guidelines for building
Interfaces1 stress this point. But the consistency of how Game Database is designed
and the Interface with that Game Database is not equally appreciated. The causes
of this are both cultural and technical.

One of these causes has already been outlined in the description of the problem
the Event-Database Architecture addresses. That is, an incomplete game design
can lead to an inconsistent data design, as the game design changes over time. But,
even when the game design is complete, there are still further problems with the
tools and techniques used to implement games.

Another cause of an inconsistent data design is that the tools often used in the
development environment are homogeneous. Any one person may have a unique set
of tasks, and may use a unique set of tools to perform each task. But the same tool is
used by everyone for the same task: be it creating computer graphics, sound effects,
writing designs or software modules for the game. These tools are often proprietary,
with closed data formats.2 This fosters the notion that it is natural for data formats
to be kept secret, despite the interoperability problems this causes. The closed data
formats masks the inconsistency in the data produced for the Game Database by
these proprietary tools. And the lack of interoperability of this data with other tools
made by different Software Developers.

It is also common, in the Computer Games industry, to use a process called
Information Hiding3 to achieve the Abstraction (i.e. simplification) of software. The
goal of Information Hiding is to hide all internal data a software module uses.

The effect of the common use of these two forms of obscuring data (i.e. Closed data
formats and Information Hiding) is a general disregard for consistency in data designs.
This is unfortunate because a consistent data design would naturally yield a consistent
Interface, both in the form of a User Interface and Software Programming Interface,
with little effort. If a Database were consistent and had no redundancy,4 then to get or
modify any given piece of information would involve exactly the same steps.

To access information in a Database, you would use the Database Records and
Database Fields. A Database, which had no redundancy, would have no duplication
in the information held in its Fields and Records. So accessing any given piece of
information would involve using the same set of Fields, and Records, in the same
order. Thus any software Programming Interface, or User Interface, which used this
Database would use the same set of Fields and Records to access similar informa-
tion. In addition to providing these Interfaces with a consistent set of processes,
these Fields and Records would provide each Interface with a consistent terminol-
ogy. This terminology would be in the form of the names and the descriptions, of

https://doi.org/10.1201/9781003502807-2

188 Event-Database Architecture for Computer Games

the Fields and Records. Each Interface could use this terminology to describe itself,
or its processes.

A formal process for ensuring a Database has no redundancy will be described
in the next chapter. Unfortunately creating a Database, with no redundancy, often
means making one which does not have a consistent data design of its Records.
A simple Database has only one type of Record or one Database Table. And all
the Records have the same set of Fields. But the Database described in the Event-
Database Architecture has different types of Records or Database Tables. So,
apart from Primary Keys, it would be difficult to use a consistent set of Fields across
the entire Database. Nevertheless, you could still maintain consistency in the way
data was accessed from the different types of Records or Database Tables.

Take, for example, the data design for LPmud described earlier. Whenever faced with
the option of adding a Field to a Record, to identify whether it had a particular property,
the Database uses a LIST RECORD instead. This would be just a single Record that
holds a list of the Primary Keys of all other Records, which had that property. This would
save time searching through the Database for Records with the same property.

For example, instead of each 3D Model Object having a Field, which indicated
whether it was being displayed, there would be a 3D Graphics List Record. This
would hold the list of all 3D Model Objects being displayed.

Similarly, instead of each sound used in the game having a Field, which indicated
whether it was being played, there would be a Sounds Playing List Record. This
would hold a list of all sounds being played.

Thus, suppose you wanted to group the Records in the Database by which
stage (or level or part), of the Game World, these were used. Also suppose there
were only a small number of stages. Instead of adding an extra Field to each
Record, to indicate which stage it was used, you could have a Stage List Record.
Each stage would have its own List Record in the same Database Table. And
each of these List Records would contain the Primary Keys of all the Records
which were used in that stage.

Such an addition to the Database would be useful, if you wanted to make use of
limited space in the computer memory. Depending on which stage of the game a player
was in, only the Records for that stage would be loaded into the computer memory.
The Database Host would look up the Record for a stage (e.g. the main menus of the
game) and load all the Records required for that into the memory, while unloading all
other Records. The Objects Host could also look up this Record to decide which game
modules (or Game Objects) should be loaded into the computer memory.

Another hypothetical example is if you wanted to give the player the option of sav-
ing the current progress of the player’s character. Instead of adding an extra Field onto
each Record that should be saved, you could use a Save Game List Record. This
Record would keep a list of all other Records, which should be copied onto a com-
puter file or a storage device, when the player saved the game. A game module (e.g. a
Save Game Object) could then look up this Record when it was time to save a game.
Another module (e.g. a Load Game Object) could also look up this Record to reload
the progress of the player’s character, back into the Database. And the player could
continue where he or she left off. Note that because the Event-Database Architecture
uses a Database with an open-data format, you can recover from any corrupt file

189Consistent Data Design

containing the saved properties of a player. You can edit the file with any Text Editor
and remove or correct the corrupt lines in the file. But you cannot do this with Game
Database of commercial game-engines which use a closed data format. Once a file
has become corrupted that is it. And you can only detect the corruption when you
attempt to load the file. And the detection involves detecting secondary symptoms of a
corrupt file. These include Fields in the data whose size overflows the limits, and cause
errors, as the data overflows into other spaces allocated by the game or other software
the computer memory. Or detecting when when loading the data from the file takes a
long time. But with the Event-Database Architecture you can detect the corruption
in the file, before it has been loaded, using the Database Checksum Records, which
saves you time. And you may be able to correct the corruption in some cases. The cor-
ruption of such files and the detecting of them is an important part of the process for
getting games approved by the Game Console manufacturers.

When you add an extra Field on to a Record, to indicate that it should be used
to save the player’s character and current state of a game, you are in effect adding a
form of data called a Flag. Avoiding the use of Fields with limited ranges (especially
Logic Flags5 or State Switches6) would be consistent with the principles of the Event-
Database Architecture. A Logic Flag would be used to set (and test) when a condition
had become true or false. A State Switch would be used to indicate which way a game
module or Game Object should behave. A change in the state of a Flag (or Switch)
would cause a logic branch or change in the flow of the software code7 or Action of
a Game Object. But the principles of the Event-Database Architecture only uses
Events to control the external and internal flow of a game: not changes in Database
Fields. This would be how it provides, the users of the system, the ability to combine
any set of events in the game.

For this reason, the state of digital devices would not be stored in the Game
Database. These have only two states: on or off. This would be just like a Logic flag.
Instead a Game Object, which wanted to know the state of a digital device, would
respond to the Controller Pressed or Controller Released Events. Once it received
one Event, it would keep assuming that the state of digital device had not changed,
until it received the opposite Event.

At which point, one of two things could subsequently happen. Either the Game
Object would wait for another occurrence of the Event it just responded to. Or, if the
Object was meant to change its behaviour, it would start a new chain of Events. The
same Game Object could respond to this chain. Or it could ignore these Events, and
another Game Object would respond instead, to perform the new tasks.

Apart from Logic Flags, and State Switches, it would also be inconsistent, with
the principles of the Event-Database Architecture, to include any ambiguous refer-
ences to data in the Game Database. For example, it would be inconsistent to use
Fields which do not contain unique identities for other data (such as Data Offsets8).
An Offset would only identify the position of a subset of data, within a larger block
of data: not the subset itself. Two different subsets of data, within two different
blocks, could have the same Offset. And it would be impossible to identify either of
the two using these Offsets.

The Event-Database Architecture, on the other hand, would rely on being able
to identify all the distinct subsets of data, at all times. This would enable it to name

190 Event-Database Architecture for Computer Games

and define these subsets. And this, in turn, would provide the staff with a language
for discussing or making inferences about any part of the software.

So, in keeping with its principles, any large block of data, in the Game Database,
should always be composed into a Database Record. And the subsets of that block
be identified by the Database Fields of that Record.

NOTES
	 1.	 Guidelines for building interfaces. Strive for consistency is the first principle in

designing User Interfaces, as outlined by Ben Shneiderman in his guide. See Glossary.
	 2.	 Closed data format. The secret description of the layout of data in a Database, and

how each data is used. This description is proprietary and only known to a very limited
number of software applications.

	 3.	 Information Hiding. A technique commonly used in Object-Oriented Design of soft-
ware, to protect one software module (or Object) from being erroneously accessed by
another.

	 4.	 No Redundancy (in a Database). The process of removing duplication of information
in a Database is called Normalisation.

	 5.	 Logic Flag. Data which is either set or cleared, when a condition that a software proce-
dure uses to control its behaviour, changes e.g. when a task it is waiting for is complete.

	 6.	 State switch. Data which controls the way software behaves. It usually controls only
one software module. It ensures that two modes of operation do not overlap. Or, it
ensures that the modes follow each other in the correct sequence.

	 7.	 Software code. The list of programming language instructions that describe the proce-
dures a computer must follow.

	 8.	 Data Offset. The index of a subset of data, within a Database. This would be in the
form of a number, which represented the distance of the data, from some reference
point, normally the start of that Database. This could be used to quickly search its
contents or define its layout.

191DOI: 10.1201/9781003502807-3

3 Optimising the Results

The Event-Database Architecture may not produce the optimum software design
for all computer hardware, in terms of performance. The performance of software
typically relates to its efficient use of computer software or hardware instructions,
data storage capacity and data transfers. The better the performance, the faster it
reacts to the software users, which helps them enjoy the experience. The best perfor-
mance may even permit bonus features to be added to the software, which increases
their enjoyment. The worse the performance, the less pleasant the experience may
be. And the worst performance could even make it unfeasible to operate the software
on some computer hardware.

For example, since the Event-Database Architecture uses a system of Events,
this may be slower than traditional methods, on some computer hardware. Instead
of directly using software procedures from other software modules, Game Objects
would do so by going through the Events Host. Another example is the description
of the Game Database.

A large Database would be a central part of the Event-Database Architecture.
Instead of directly using the local data it had, each software module would access
its data from the Database. This would take longer than if the data were part of that
module, on some computer hardware.

As far as the Architecture would be concerned, a simple, well-defined Database
would be sufficient. The problem of designing a Database with the best perfor-
mance, which would be consistent, fast and small, is beyond the scope of the design
of the Architecture. But the components of the Architecture do include a Database
Administrator who could help address this issue.

Some would argue that a small Database should be a pre-requisite of the Event-
Database Architecture. But it would be good practice to leave such an optimum
Database till the very late stages of a project. Making a software optimal would
require a lot of effort and need to take into account the entire scope of a project.
It would sacrifice clarity for the sake of efficiency. Every addition made, after the
Database was made optimal, would be hindered by the lack of clarity. And it would
require repeating the whole process of making the Database optimal again to take
into account the new additions.

When it comes to producing an optimum data design, with no redundancy in the
Game Database, there are many written Database design sources1 which could be
referred to for help. These take into account experiences learned from other indus-
tries (outside of the Computer Games industry).

As well as reducing the size of the Database, you could also reduce the number of
Game Objects to make the software more optimal. Instead of loading large groups
of Game Objects, which were very similar to the computer memory, the Objects
Host could load one copy for each group. This master copy would receive all the
Events for Objects from a group. Each occurrence of an Object of that type, in the

https://doi.org/10.1201/9781003502807-3

192 Event-Database Architecture for Computer Games

Game World, would therefore need to use a different ID for the same event. So that,
from the ID of the event received, each master Game Object would know which set
of properties, and corresponding Abstract data, to use.

Even though the Event-Database Architecture has been designed for optimum
communication, instead of speed and size, this should be kept in perspective. Just
because a system is not optimum in one criterion does not mean it is the worst either.
The speed of the performance of software is only one of many qualities that affect
a software user’s enjoyment. It is not even the most important. Before software can
give its best performance, it has to give a basic performance. And software with few
errors, and less performance, is better than software with many errors and better
performance. With respect to its performance, there would be six qualities of the
Architecture to bear in mind.

The first quality would be that the Event-Database Architecture has several
precedents. Computer Games have been released, that use other systems of events,
similar to one in the Architecture. In these other systems, the software modules have
been used to send messages (i.e. data) to an intermediary when events occur during
a game. And any other module, which was interested in these events, could register
itself, with that intermediary, to receive that message. Games have also been released
which used Finite State Machines.2 These have required the software to have a well-
defined set of states, and a system of events, similar to the one in the Architecture,
to control the flow of software from one state to the next: from one mode of behav-
iour to another. Games using these systems have been produced and released on even
the lower end of computer hardware or platforms. Notwithstanding that these were
borne out of a Software Evolution Process, these systems only differed, from the one
in the Event-Database Architecture, in two other major respects.

One is that each of the modules, written by the Game Programmers, controlled
the system of events: not a central Database. The other is that these systems have
not been part of a single coherent software architecture. As has already been men-
tioned, the evolutionary principles of the Software Evolution Process have resulted
in games going through multiple transient architectures. Thus, the system of Events
has become confused. Inevitably, these have produced Computer Games with mul-
tiple competing systems of Events, one system of Events for the User Interface,
another different system for the physics, another different system for the Artificial
Intelligence, another different system for communicating with Web Servers or other
computers across a network, another different system for playing sounds or music.
Or the systems of Events which have become mixed with other devices for control-
ling the flow of the game; including Logic Flags and State Switches.

The second quality of the Event-Database Architecture, to bear in mind, would
be that it would be built mainly around a Database. So it could be built on some of the
powerful Desktop computers,3 used by the companies in the Computer Games indus-
try. These have supported software which used far more resources than an Event-
Database Architecture would. These have included corporate Databases, which
held all the resources used to build multiple computer games and other products.

The third quality of the Architecture, to bear in mind, would be that it would
be scalable.4 So you could develop games on powerful Desktop computers and
then scale them down to less powerful computer hardware. Since these offer more

193Optimising the Results

computing resources (such as computer memory, or faster Central Processors), the
powerful hardware would allow you to concentrate on implementing the features of
the game. You would not have to worry about limited resources.

However, once the features were completed, or you wanted to show a client a
demonstration, then you would concentrate on the limited resources of the target
computer hardware or platform. You could use the powerful tools available on
Desktop computers to analyse inefficiencies in the software data or procedures. You
could use the tools to systematically convert these data and procedures, into a format
which produced faster transfers of data. You could also use these tools to eliminate
redundancy in these data or procedures.

This is not new! Between 1980 and 1989, Desktop computers were used to cre-
ate games for less powerful home computers.5 Each game would be developed on
the Desktop, then it would be scaled down for the home computers. Even recent
Games industry commentators6 have noted the value of having a Desktop version of
a game, though that may not be its final destination. Furthermore, systems, based on
Relational Databases, have been scaled down onto small devices7 with even fewer
resources than those typically used to play Computer Games.

Compare this approach with the normal practice in the Computer Games indus-
try. This attempts to make a system optimal while it is being developed. Any system,
computer or human, which attempts two things at once is more complicated. And,
because it is more complex, it is more prone to errors. It would be far better to tackle
each task separately. It would be better to have one set of employees, or tools, handle
implementing features. After the first set had finished, another set would handle con-
verting the game from a powerful computer to a less powerful one.

Once the software gives a basic performance on a more powerful computer, the
order may then be changed. That is to say, the number of components and the rela-
tionship between these may be changed to find the best performance on that com-
puter. The order that produced the best performance would be the same order that
would produce the best performance on a less powerful computer.

Although a more powerful computer may have been designed to be used by multi-
ple software, simultaneously, the best performance of any of these would still remain
when it operated alone. This would be the same as with a less powerful computer,
which could only ever be used by one software at any one time. What may make it
impossible to transfer software onto a less powerful computer would be an inability
to transfer one of its components. But this could be overcome if all the components
were scalable components. That is to say, each component had been designed to use
a variable amount of resources on the computer it was originally built.

Therefore, the feasibility of transferring software, from a more powerful com-
puter to a less powerful one, comes down to scalable components. If the software
could not operate on a given computer, this would not be because it was originally
built on a more powerful computer. This would be because the components had not
been, or could not be, scaled up or down far enough.

Fortunately, the basic components of the Event-Database Architecture would
all be scalable components. The Events Host may use a varying amount of Primary
and Secondary Events. The Database Host and Game Database may use a varying
amount of Records. The Objects Host may use a varying amount of Game Objects.

194 Event-Database Architecture for Computer Games

The same would apply to the Physics Host and the Graphics Host. The Sounds
Host may play a varying amount of music or sounds. And the Game Controllers
Host may interact with a varying amount of Game Controllers and Game Objects.
The Central Host would only use one Record. So, barring the inability to scale up or
down any of its components far enough, the Architecture would be feasible.

Once all the components had been scaled up or down far enough, any qualities
that these had on a more powerful computer would be transferred down as well.
So if a certain order of the components produced the best performance on a more
powerful computer, then that same order would produce the best performance on a
less powerful one as well. Efficient software may not necessarily produce scalable
software. But scalable software would always be able to produce efficient software.

If necessary, the scalability of the Architecture may improve further by modi-
fying the Database Host. In particular, its Interface may be extended to include
software procedures that apply Basic Set Theory to the Game Database. So that
other components could use these to query the Database, without transferring data
from it.

For example, you could either find the subset of Records that had a Field matching
some criteria from another set. Or you could get a new set of numbers by applying
some mathematical formula to a numerical Field, in a given set of Records. Or you
could produce a new set of words by applying another formula to an alphabetical
Field, of another set of Records. Or you could find out whether a Primary Key, a
number or a word, was amongst a set of Primary Keys, numbers or words listed in
a Field. Or you could find the intersection of one set of Primary Keys, numbers or
words with another set. Or you could find the complement of one set in another. Or
you could find the union of one set with another using these new procedures.

All software procedures, that used the Game Database, would find such an exten-
sion to the Interface useful. Furthermore, these new procedures of the Database
Host would be scalable components. So would any other procedure that used these.
All the steps in any software procedure may be performed just using operations
from Basic Set Theory. And you could divide such a procedure into as many parts
as possible. You could also scale up or down the size of the sets of data used in each
part.

Of course, before you scaled up or down any software component, you would
need to be able to reorder the components so that you could find the order which pro-
duced the best performance. This leads to the fourth quality of the Event-Database
Architecture that would help the production of optimum software. This would be
that, by following it, the software system you constructed would be an ordered soft-
ware system.8 That is to say, there would be some principles directing the set of
components of the game, the relationship between the components and, most impor-
tantly, the growth of this set. Thus, you could use these same principles to easily
deconstruct the system and rearrange it in a new order.

For example, suppose the performance of a software module could be improved,
on some computer hardware, by keeping it together with the other modules that it
used, in the computer memory. With the Event-Database Architecture, the order
in which Game Objects were loaded into the memory could be changed. This would
be determined by the Objects Host. More precisely, this would be determined by the

195Optimising the Results

order of the list of Game Objects, which it would load into the memory. And this list
would be held in the Objects List Record in the Game Database.

So you could rearrange the Game Objects and group these by the frequency of the
interactions between one and another. That is to say, each Game Object would be placed
in a group, in the Objects List Record, adjacent to the other Objects it was most frequently
used. And if a Game Object were used just as frequently with one group, as another, then
both groups would have one copy of that Game Object placed adjacent in the list.

Another example would be if the speed of access to data, on some computer hard-
ware, could be improved by storing data together that were frequently used in conjunc-
tion. These data may be accessed either from the computer memory or some storage
media. In the Event-Database Architecture, the order in which data were stored
could be rearranged. This would be determined by the order of the Records, on what-
ever storage media the Game Database was kept on. So you could rearrange these
Records. You could group Records by the frequency these were used in conjunction.
That is to say, each Record would be in the same group, and adjacent with the other
Records it was most frequently used with. And if a Record were used just as often with
one group, as another, then both groups would have one copy of this Record.

Compare this with the software architecture normally used to make computer
games, in the Software Evolution Process. This process has only two, very broad
principles. That is, the software should evolve slowly over time, and the basis of
this evolution is feedback from the software user. These two principles direct the
software architectures used at different points in time, during the process. The pro-
cess itself is not subject, however, to the direction of any one software architecture.
Its principles do not direct the composition of the software, or the growth of these
components, but only the end result at any point in time. So as long as the changes
to components meet the demands of the software user, the principles of the process
have been met. It would not matter what these components were or how they were
related to each other. The principles of the process have absolutely nothing to say,
for example, about the composition of the very first version of the software. And it
makes no difference what software architecture this uses.

On the other hand, this would matter to the Event-Database Production
Process. Furthermore, although it encompasses the second principle of the
Software Evolution Process, it also compensates for the growth of the software.
That is, the software would be modified based on the feedback from the software
user. But the growth of the software components would be directed by the Event-
Database Architecture.

At the beginning, of a Software Evolution Process, the leaders of that project may
add more components or principles to its default principles. These components may
seem to affect the growth of the software. And these may include software tools that
allow you to edit some elements of the game design, such as the game editors.

But, as has already been mentioned, these additions to the default principles would
be more concerned with selling the project, to its financial backer, than how the
software grows. The more it appears that a project could handle changes to a game
design, the less risk it would seem to have to an investor. So a few crude, makeshift
principles or tools would be added to the software project to give the appearance of
a flexible system for software production.

196 Event-Database Architecture for Computer Games

However, during the project, these makeshift principle or tools would be used far
too inconsistently to be effective. Either these makeshift principles or tools would
be subject to the rush to meet the second principle, which would occur frequently
since these additional principles or tools were only meant to be temporary. Or the
leaders of the project would explicitly state that these additions were subject to their
arbitrary decisions. And indeed, the software architecture, which the project ends up
using, does not produce an ordered software system, at the end of it.

At the end of the project, it would not be possible to use the principles, or tools
of this software architecture, to deconstruct the computer game. It would not be
possible to use these principles or tools to predict all the errors that may arise from
removing any software component. So you could not deconstruct and reconstruct the
game into a more optimum form.

Thus, since the project would not be able to rely on prognosis, to produce a more
optimum game, it would have to rely on diagnosis instead. It would have to rely on
diagnostic tools that allowed you to probe the external behaviour of the software,
at the end of production. It would have to rely on tools that allowed you to identify
frequently used, slow software procedures or large pieces of data, during the testing
of the game. And, once identified, the performance of these areas of the software
system may be improved. However, this must be done without changing the order of
the components of the system.

This method of improving the performance would be further flawed by how these
tests were conducted when the game design was not complete. As these tests would
not be exhaustive, because of the incomplete game design, the performance of the
unfrequented areas of the game would be ignored. If the game the project produced
was an ordered software system, you could identify the principles that caused the
poor performance in one area. And this could be used to identify and improve the
performance in other areas; even areas which may not be frequented during the tests.

Besides being blind to some areas of the game, which may be improved, the proj-
ect would also be limited by the risk of improving the performance of the software.
The slow software procedures and large pieces of data, discovered by the diagnostic
tools it uses, may cut across several software components. However, since the proj-
ect would produce a game that was not an ordered software system, no one would
understand the relationship between its components. Therefore, anyone could end up
improving the performance of the software procedures or data, in one set of compo-
nents, and causing errors or poor performance in other components.

For the same reason, the project would be restricted from using the simplest
method to improve the performance of a game. You could simply remove a feature
from a game, or redundant components from a software system to improve its per-
formance. By choosing to remove software procedures or data entirely from a game,
you could not improve the performance of these pieces of software any better. But
if these pieces were not part of an ordered software system, this removal would
cause errors. Rebuilding the game with the remaining components may expose some
errors, but it would obscure others. Without an ordered software system, you could
not predict what errors may arise from removing a software component.

This leads to the fifth quality of an Event-Database Architecture to bear in
mind. That is, you could predict what Actions would occur concurrently, in response

197Optimising the Results

to an Event. You could do this simply by looking at the list of Game Objects, which
responded to a Primary Event, in the Game Database or the Secondary Events
which followed it in the Events History Record. And therefore make your system
more optimal by combining several Secondary Events or Actions into one. You
could get all the data that these Secondary Events or Actions required and use all
of the data at once. You could also eliminate any duplication in Secondary Events
or Actions.

Compare this with software systems which do not use Events and do not have a
complete game design. Two software modules could be responding to the same event,
in a game. But only a complete search through all the modules would yield a picture of
where this was happening. And that is simply not practical in a large project.

The final quality of the Event-Database Architecture, to bear in mind, would be
that you could spot redundancy in your data. Since all data would be stored in one,
central Database, you could easily analyse it to see if pieces of information were
being repeated. So you could eliminate this information and reduce the amount of
data being transferred across the game.

Doubtless, there would be lots of Primary Events, which would be added to the
Game Database, that may be subsequently not used (i.e. no Game Object would
respond to). Nevertheless, the Records for these Events should be added to the
Database. A description of each Record should also be added to the documentation
of the Database.

The Database produced by this method would have a catalogue of both used
and unused Events. So you could create a software tool which uses the Database
to remove unused Events from the system. This could be achieved by searching
for all the Records, of Primary Events, which had an empty list of Secondary
Events. The search would be based on the assumption that any Primary Event,
which was going to be used, would begin with at least one Secondary Event
on its list. If that were true, then this search would produce a set of Records for
unused Events. All reference to these Events could then be removed from the
Game Objects. All the Records, belonging to these Events, could be removed
from the Database as well.

This could be used to create a more optimum version of a game, such as a demonstra-
tion or a final version. However, the original version of the game would still maintain a
set of all the Events, in its Objects and Database. Thus, it would ensure that the widest
range of options were always available for making future changes to a game design.

The last two qualities of the Event-Database Architecture were examples of
how you could make a game more optimum at the level of a technical design. This
would be far more important than making a game more optimum at the lower level
of the computer hardware. This would be how performance would normally be
improved with a game which had to be optimal, while developing at the same time,
such as in the Software Evolution Process.

This would be done by habitually looking for ways to more efficiently store even
the smallest, most insignificant piece of data, on the computer hardware. And this
would be achieved by always looking for ways to reduce the steps taken, by software
procedures, on the hardware. This would be done no matter how short that proce-
dure was or how often it was used.

198 Event-Database Architecture for Computer Games

But those who do this would be oblivious to how much these habits improve
the performance of the software overall. And they would be oblivious to how these
measures affect an ordered software system. Instead, they would merely be taking
uncalculated risk, by removing seemingly redundant pieces of data and steps from
procedures. All in the hope that, somehow, all of these small measures add up to
some significant advantage in the performance, at the end of the process.

They would fail to realise that an improvement at the higher level, of the technical
design, has the effect of simplifying the construction of the game at the same time,
whereas an improvement at the lower level, of the computer hardware, would have
the effect of complicating the construction at the same time. The latter method would
rely on characteristics of the computer hardware which would be un-transferable,
obscure and harder to maintain. It would play right into the hands of the school of
engineers who love to make software design ‘so complicated that there are no obvi-
ous deficiencies’.9

3.1  FORWARD ENGINEERS AND REVERSE ENGINEERS

The Event-Database Architecture has a context, from which it stems and to which
it would be applied. This context is how to produce a Computer Game without a
complete game design. But this context lies within a larger context, which extends
far beyond the narrow shores of the Computer Games industry. This second context
extends to the outer reaches of the Software industry. If you do not understand the
tiny ripples, at the edges of software production, then you will drown in the tidal
waves that will wash over any attempt you make to implement a game based on the
Event-Database Architecture.

That is to say, if you do not understand the thoughts which give birth to the dif-
ferent views of the software production process, then this will impact the efficacy
of the Event-Database Architecture or the Event-Database Production Process.

There are two schools of thought in software production. The first school believes
that software production is a science. The second school believes it is just an art.

The first school believes that by carefully designing your software and writing it
down, you can clarify your intent and ensure that your plan is comprehensive. If your
plan has been well written, then it would make it easy to build and test the software.
This is the science (or discipline).

The second school believes the entire production process is an art. They do not
just believe the design of the software is an art, but the building and testing too: the
software production process itself. Every instance of a production process is merely
an example of the aesthetics of the art. Therefore, there can be no such thing as a
complete production process, a complete design, a complete implementation or a
complete test. A belief in such things is merely a futile attempt to limit expression.
More precisely, they believe software production to be an art of minimalism.

The aesthetics (or beauty) of the art is not just the minimal number of steps of
the production process but the minimalism of the internal structure of the software
product itself. The minimal number of software instructions, minimal number of
data transfers and consumption of minimal space of the computer memory or stor-
age media make the software beautiful. Be it at the beginning, middle or end of a

199Optimising the Results

production process, if the software lacks this internal structure it is not beautiful.
And they conflate this minimalism with simplicity.

Placed at the disposal of the two schools are two forms of engineering: Forward
engineering10 and Reverse engineering.11

Forward engineering begins with higher-level tools and moves progressively for-
ward towards lower-level tools. Reverse engineering, by contrast, begins with lower-
level tools and moves backwards towards higher-level tools.

The higher-level tools include an analysis of the requirements, of a product, fol-
lowed by the documentation of this analysis. These tools include the documentation
of the lower-level tools needed to meet the requirements and build the product. The
higher-level tools also include a study of the feasibility of this plan to build the prod-
uct and the documentation of this study. The highest-level tool is natural language,
which would be required to analyse and document the plan to build the product.

On the other hand, the lower-level tools include the components used to build the
product and any custom tools required to build these components. The lower-level
tools also include any third-party products used to build the components and any
diagnostic tools required to test these in the final product, including physical obser-
vations. The lowest-level tools are the characteristics of the components, or other
lower-level tools, used to build the product. These are the incidental qualities the
lower-level tools or components have, which only become apparent after the product
has been built, and turn out to be useful to improve its performance in certain areas.
These qualities, however, would not have been apparent when the original plan to
build the product was drafted. And these would have been too risky to predict and
account for in that plan.

So, in Forward engineering, the lowest-level tools would only be used at the end
of the process, after the product had been built and tested. And these would only be
used to improve its performance in the areas that had been identified by the testing.
Since Forward engineering begins with a plan, followed by its implementation.

Reverse engineering, on the other hand, begins with an implementation and
tries to reconstruct the plan. That is to say, it begins with an existing product and
a subset of lower-level tools used to build that product. And it attempts to deduce
the rest of the lower-level tools and the higher-level tools, including the high-level
designs, used to build that product. So you can use these reconstructed high-level
designs, reconstructed higher-level tools and reconstructed lower-level tools to
rebuild the original product. Or to build a competitor product. Or to fix the origi-
nal product after its original design and the original tools used to build it have been
lost. Reverse engineering depends on the lowest-level tools and empirical tests to
begin these deductions and reconstructions.

These deductions begin by experimenting with the product or testing it while study-
ing its characteristics with diagnostic tools. From these experiments, it is possible for
someone to deduce some of the other lower-level tools used to build that product. And it
is possible from these lower-level tools to deduce some of the higher-level tools.

However, it would be difficult to deduce all of the lower-level tools, and it would
be almost impossible to deduce all of the higher-level tools used to build the original
product. But that is not the goal of Reverse engineering. As has already been stated,
the goal is to either create a competing product which at least exhibits the same

200 Event-Database Architecture for Computer Games

external characteristics as the original product. Or to fix errors with the original
product without access to its original design.

The first school of thought always depend on Forward engineering when build-
ing new products, unless they want their software to work with another, and they do
not have access to its designs. They include those who practice Software engineer-
ing.12 The second school always depend on Reverse engineering, when building new
products because it affords the artistic licence over the entire software production
process. This may seem bizarre at first sight. There is a conflict between making
new products and using Reverse engineering. But the way in which they resolve this
conflict gives them several characteristics.

First, they always rely on an existing product to base their implementations on.
They always begin by experimenting with and refining small parts of a software
design for which they can see an existing implementation, in another product. All
subsequent additions are similarly based on examining other products. These addi-
tions drive rather than follow any software design. These additions also shape the
software production process which they follow.

Second, they pay no attention to higher-level tools. This includes any software
designs at the beginning of the production process: not even their own.

Third, they do pay careful attention to the lower-level tools. They especially pay
attention to, to the point of obsession, the lowest-level tools: the characteristics of
computer hardware, the programming tools or other lower-level diagnostic tools.

Fourth, they only implement the minimal components required to build any prod-
uct, as befits the aesthetics of their art. This is a direct result of the deficit between
the attention they pay lower-level tools and higher-level tools. They include little or
no checks or reports for errors when they write software or software components.
Since these checks and reports are all constructs of higher-level tools.

Likewise, they habitually neglect Abstraction. Abstraction is the ability to create
software or software components which hide their internal operations or data. For
example, a Word Processor is software that can be used to write and print documents.
Its ability to work on different computer hardware or work with different printers is a
quality of its Abstraction. The User does not need to know its internal operation on
one hardware or the next. The User does not need to know the data which it sends or
receives from the printers. If there is anything wrong with the instructions it sends to
the hardware or the data it receives from the printers, the User does not need to know
this. Indeed the printer may be completely missing and the Word Processor would
continue to function and allow you to edit documents.

And when a printer does become available, it will allow you to print documents
automatically, without needing to be stopped or restarted. The Word Processor com-
pensates for all these things with automatic behaviour and default options of either
the Operating System it is built on or, failing that, additions to that system made by
the authors. This is the kind of Word Processor those who belong to the first school
would produce.

On the other hand, a Word Processor with no Abstraction would only work on
one or two computer hardware. It would fail or refuse to start if a printer were miss-
ing. It would have no default font, page size, font colour or background colour and
require you to explicitly specify all these things. It would fail at the smallest error

201Optimising the Results

in the instructions it sends to the hardware or data it receives from the printer. And
this is the kind of Word Processor that those who belong to the second school would
produce. It is something which is fragile and allows for no ambiguity.

Abstraction allows for ambiguity. The words of natural language are the highest
form of Abstraction. And it is no coincidence that those who belong to the second school
despise this tool and neglect it with the written designs at the beginning of the software
production process. And instead they rely on the fragile mechanics of programming
languages to document their work. Programming languages allow for no ambiguity.

Fifth, they are useless at making innovative products, for which there is no prec-
edent. This naturally draws them to, amongst others, the Computer Games industry,
since it suffers from a dearth of original games.

Sixth, they always look at a software project, and anything associated with it, in
terms of the lower-level tools.

Finally, they are very conscious of the marketing of lower-level tools, techniques
involving these tools, in other competing products and how they can use these to
market themselves.

In the Computer Games industry, the competing products they model their imple-
mentations on are other Computer Games. It may be a game they have already played
before. Or it may be a product they studied in order to learn how to make games. Or it
may be a game they have been asked to emulate. They could use Forward engineer-
ing to build these games. But this would limit their artistic expression, which always
preoccupies them.

This fascination with the aesthetics of the art of software production comes about
by accident. They stumble across the fact that you can construct complex software
products by improvisation. This realisation either comes from noticing the ad hoc
tool or method used to optimise the game they admire. Although this method may
well have only been employed at the end of its production process to improve its per-
formance: not at the beginning. Or this realisation comes from having used Reverse
engineering to study their first game. Or this comes from having developed a game
using a Software Evolution Process. What they fail to notice is that the games
they admire, the facsimiles they produce and the product of a Software Evolution
Process have no characteristics. All of these products exhibit no distinguishing trait
or Quality which can be relied upon.

This unreliability may not manifest itself only through the errors in these prod-
ucts. But it may also manifest itself through the subsequent corrections, which
would be disguised as upgrades or sequels. It may manifest itself through the
delays between the appearances of these subsequent releases. It may manifest
itself through the inability of each release to innovate over the previous one. And
it may manifest itself through the high turnover of the staff13 involved in these
production processes.

Ignoring these symptoms of the unreliability of ad hoc methods for optimising
products, such as Reverse engineering and the Software Evolution Process, they
never mature. They still see software production as art. They see Reverse engineer-
ing (and its ability to partially deduce the higher-level designs from lower-level tools)
as a panacea to any problems. They think themselves clever because they know one
brute force method (i.e. Reverse engineering) to cope with all eventualities. Even

202 Event-Database Architecture for Computer Games

though they are ignorant of any other method. To cover this ignorance, they cover
the software production process with the aesthetics of their art, as much as possible.

One such example of this is when they produce a software design. They are not
interested in documenting the components of the software and how these will be
made and assembled. They are merely interested in setting out a canvas for their art,
with a general outline of the tools and methods that will be used in their composition.
They begin by drafting a set of design principles14 either alone or, in a collaborative
project, with a handful of their peers who share the same appreciation of the art.
These principles embody the aesthetics of their art. They do not understand that
design principles are oxymorons. That is to say, they do not understand that decid-
ing the tools and methods you will use to solve a problem before you have finished
describing your understanding of that problem, is narrow-minded.

A design provides a solution to a problem. That is why the classic software pro-
duction life cycle does not proceed with a software design without an analysis of the
problem (i.e. the customer’s requirements or User specification). Since you have to
understand a problem before you choose a solution, writing a software design has
some level of subjectivity. It depends on how you look at a problem and how you
approach it. Different people look at a problem and approach it in different ways. By
describing, in a software design, your perception and approach you can at least limit
the level of subjectivity.

Firstly, you at least ensure that others may find solutions, if your solution partially
or completely fails. History has shown, time and again, that solutions have been
found by looking at a problem from a different perspective or taking a different
approach. By describing your approach, you also give yourself criteria for selecting
tools, or methods, which you can naturally use in your solution. These are namely
those tools and methods that adopt the same approach.

But a set of design principles preselects the tools and methods that will be part of
a solution. It presupposes the approach and the perception of a problem. It presup-
poses that the problem has already been mainly, if not completely, understood and
solved. In short, design principles are only relevant when you are Reverse engineer-
ing or improvising.

Thus, when those who rely on Reverse engineering are presented with any soft-
ware architecture, they will look for design principles in it. They conflate design
principles with software architectures (even though design principles are not
software architectures – see the definition of design principles in the Glossary). When
presented with a software architecture, including the Event-Database Architecture,
they will either dismiss it because they cannot fit it into any of their design principles.
Or if they do not have the authority to dismiss it, then they will force their design prin-
ciples into it. And undermine the software architecture in the process.

For example, one popular design principle is a design pattern15 called the
Observer design pattern. This principle allows for the flow of the game to be con-
trolled by editing two sets of low-level code that encapsulates Events in a game. One
set of code broadcast Events and another set of code can subscribe or unsubscribe
to respond to these Events. This seems very similar to the system of Events that
the Event-Database Architecture uses. But there are several major differences.
One of which is that only those who know Reverse engineering can recognise that

203Optimising the Results

design pattern in the low-level code and change the flow of the game, i.e. the Game
Programmers. Whereas with the Event-Database Architecture, anyone can recog-
nize the architecture and anyone who can edit the Relational Database can change
the flow of the game, i.e. all the staff.

If you are Forward engineering, design patterns and design principles are irrel-
evant. Your focus is on the original problem; not the existing systems which have
solved the problem. This is not to say that, in Forward engineering, no prior knowl-
edge is applied to a problem. On the contrary, all your personal knowledge and
experience is applied; unconsciously and without any partiality. Forward engineer-
ing involves finding natural solutions through imagination. Design principles are a
substitute for imagination.

These principles are a way of limiting the outlook of a problem to the tools or
methods you preselect, without having to describe your perception or approach to the
problem. The principles provide ways of hiding the difficulty you have understand-
ing a problem. In this respect, design patterns and design principles are exactly like
heuristics.16 Heuristics are speculative rules and educated guesses that are meant to
increase the probability of solving a problem. These are used to find a solution in the
shortest time possible; not the best solution, nor even a feasible solution.

Therefore, a statement of design principles is merely a list of limitations to the
software design beyond which, those who rely on Reverse engineering, will not look.
Their first thought when faced with a problem is the tools they will use and how they
will fit the problem around these tools. Their last thought is to try to understand the
problem to select the tools to solve the problem. They like to struggle with a problem
rather than understand it.

As already mentioned, this struggle comes from the conflict between creating new
products and using Reverse engineering. This struggle contrasts with the harmoni-
ous relationship between creating new products and using Forward engineering. The
basis of this harmonious relationship is understanding. It is because the primary
concern of Forward engineering is understanding, rather than recreation, that the
first school of thought relies on it. They believe that if you have an understanding of
a problem, then a solution will naturally follow. In fact, they believe several solutions
will naturally follow; not just one. And these solutions give both you and your client
options, out of which one or more will satisfy you or your client’s needs. This belief
gives those who rely on Forward engineering several characteristics.

Firstly, they believe it is better to have half a product and complete understand-
ing than a complete product and half an understanding. So they spend a majority of
their time working on their understanding and a minority of their time working on
the product itself.

This will make them welcome the first step of the Event-Database Production
Process. That is conducting a feasibility test of a portion of the game based on
the Event-Database Architecture on some computer hardware. Although the
game they will be testing will not be the final product, and it may not even be
half a product. The test does give them time to have a complete understanding
of the software architecture the game will use. It will give them time to express
their ideas and work on their understanding. It will give them time to try out
ideas which they were unsure about. They can return to the feasibility test, later

204 Event-Database Architecture for Computer Games

on in the Production Process, to try out the feasibility of the new ideas. The
feasibility test will not be discarded as would be the case in the normal Software
Evolution Process used to build Computer Games. Where the software archi-
tecture itself mutates along with everything else. And the software architecture
being used in later steps of the process may be a very different animal from the
one they started with at the beginning.

Secondly, they welcome the opportunity to explain their understanding of their
work to others, not least because this gives them an opportunity to test their under-
standing. This also gives them the opportunity to present any documentation they
write to record their understanding. This includes presenting any materials describ-
ing the software architecture they were using, including this book about the Event-
Database Architecture.

Thirdly, they are very good at expressing themselves. This comes both from
listening to other people expressing ideas and expressing ideas themselves. This
comes from listening and reading other people’s explanations, in order to acquire
their understanding. This also comes from explaining their understanding to
others.

This quality of those who rely on Forward Engineering can greatly benefit the
Event-Database Production Process. Especially when it comes to expressing the
data that they want to see in the Relational Database to the Database Administrator.
Before the Database Administrator writes the data design. This also helps the
Database Administrator express the contents of the data design to the rest of the
staff in the production process. If the Administrator belongs to that school of thought.
Since the definition of the Database Records in the Relational Database acts as a
lexicon or dictionary for the language used by the rest of the staff in the Event-
Database Production Process. If the Administrator were excellent at expressing
him or herself, then the definitions would be excellent. And if the definitions were
excellent, then the language would be excellent.

Fourthly, those who belong to the first school of thought believe that being able
to successfully communicate an idea or a problem is the most difficult part of their
work. If you were able to successfully communicate an idea or a problem, then you
would have a good understanding of it. And if you were to have a good understand-
ing of the problem, then you would naturally find multiple solutions: not just one
solution. Since you can see the problem from multiple angles, express the problem
and a solution from each angle.

For example, the Event-Database Architecture comes from expressing a sin-
gle problem, the Software Evolution Process in Computer Games from multiple
angles. From the angle of the Game Producer, Game Designer, Game Programmer,
Game Artist, Sound Designer or Engineer and the Game Tester. And it provides
multiple solutions for each angle. The Game Producer and Game Designer can
query or edit the flow of the game by querying or editing the Relational Database.
For the Game Testers, they can find out the major features of the game so far by
querying the Events in the Relational Database. And do some form of Quality
Control by just testing those Events independently with the Events Host. For
the Game Artist they can query the Database to find all of the artwork, all of the
3D models or 2D images of a particular size, in a particular location, that uses

205Optimising the Results

a particular Materials or Textures, that were used by a particular Game Object.
They can interoperate with the Game Database and use whatever tool they went
to add data to the Database which can read or write in its open-data format. For
the Sound Designer they can query the Database to find all the sounds, all of the
sounds of a particular length, all of the Events associated with playing sounds, all
of the Game Objects that produce these sounds. They can use the same system
of Events as everyone else. For the Game Programmers they have very small
simple Game Objects and Actions to write. That naturally break up into other
small Game Objects and Actions depending on the system used to generate the
Game Objects. And they have a system for generating Events which can antici-
pate future changes in game design and allow the flow of the game to easily adapt.
And they have a Relational Database Management System to help them query
and edit all of the Events, Actions and Game Objects.

For this reason, those who belong to the first school of thought would thrive on the
ability to express themselves through a Relational Database in an open data format.
Such as the one described in the Event-Database Architecture. They would then
be able to express any problem they encounter during the Production Process using
whatever tool they like that could read from, or write to, the Relational Database in
that open data format.

Fifthly, those who rely on Forward Engineering produce a generous amount of
work because they produce multiple solutions to any given problem. This gives you
or your client more than one option. Either they may present you with multiple solu-
tions during the software production process. Or they may see limitations to one
perfectly adequate solution and, instinctively, attempt to correct it before presenting
it to you. This may seem like a lot of wasted work. But it merely reflects the multiple
solutions they naturally produce. And the flexibility of these solutions is what will
allow you or your client to address late or unforeseen problems that will almost cer-
tainly occur in a project.

This view of software production, held by the first school of thought, would have
initially been borne out of education. Their education would have taught them the
different steps of a Forward engineering process and extolled its virtues. But they
would not have had any practical experience with that process. This education would
in turn have been gathered, over the ages from the two basic steps which have been
applied to manufacture any complex work or product. These two steps being an
analysis or a plan, followed by its implementation. As time passed, these steps were
broken down further into the smaller steps described in the education of the first
school of thought. But although they acquire a knowledge of Forward engineering,
they do not use it.

Only after the frustration of one or more failed projects do the members
of the first school turn back to their education and acquire faith in Forward
engineering.

Therefore, not everyone who has graduated from school belongs to the first school
of thought. But those who have failed recognised from this failure the unreliability
of ad hoc methods for optimising products, Reverse engineering and the Software
Evolution Process. They are the ones whom the Event-Database Architecture and
Event-Database Production Process would benefit from the most.

206 Event-Database Architecture for Computer Games

3.2  DIAGNOSIS AND PROGNOSIS

The first step of the classic software production life cycle and the first step of the
Event-Database Production Process are the same. Both processes begin with a
feasibility study. The object of the study is to assess whether it is feasible for the
software project to be delivered, on time, given its complexity and the tools that
were available to build it. The two schools of thought, one which views software
production as an art and relies on Reverse engineering and the other which views
software production as a science and relies on Forward engineering, take very dif-
ferent approaches to this first step. In the case of the former, they use their knowledge
of lower-level tools (especially diagnostic tools) to conduct this first step. In the case
of the latter, they use higher-level tools to conduct this first step.

In the case of the Event-Database Production Process, the first step is a mini-
mum set of Events, Actions, Game Objects, Database Table, Records and Fields
required to test the Event-Database Architecture on the target platform and a
description of this set in natural language. See the subchapter entitled

Step 1: The Feasibility Study/Vertical Slice

in

The Event-Database Architecture for Computer Games: Volume 1, Software
Architecture and the Software Production Process.

Both this set and the natural language describing this set are higher-level tools.
Therefore, those who view software production as a science will appreciate these
higher-level tools. Whereas those who view software production as an art and rely on
Reverse engineering will dismiss these higher-level tools or skip over that step. Since
it does not depend on their knowledge of lower-level tools. The kind of first step they
would appreciate would be one which depends on their knowledge of lower-level
tools.

But depending on the knowledge of lower-level tools (e.g. the characteristics of the
computer hardware, Central Processor, Graphics Processor, computer memory or the
instructions of a low-level programming language) to assess the feasibility of soft-
ware is impractical and unreliable. Any higher-level tool (e.g. a User Specification, a
software design, a game design, a technical design, a data design and a tools design)
would be constructed from many more lower-level tools. So efficiency in higher-
level tools would always be more significant than efficiency in lower-level tools. If
you found it difficult to tell whether a project would be feasible, from its higher-level
tools, then you can conclude that it is not trivial. And if it were not trivial, then you
definitely could not tell its feasibility from the perspective of the lower-level tools.

This is why a real feasibility study would concern itself only with the higher-level
tools. It would concern itself first with the breakdown of the higher-level tools. This
would include the features the software user wants, the interaction between these
features and the User Interface, the different software modules, the software data
and the software procedures required. But a feasibility study would not concern
itself with the lower-level tools themselves.

207Optimising the Results

The objectives of the study would be to assess the cost and time it would take
to build the software. These would be related to its complexity. So the study would
concern itself with the number of different parts of the software and the number of
relationships between these parts.

It would concern itself with the number of software modules: not cramming as
many software modules as they can into one module or file. So it is faster for the
Central Processor to compile or translate the programming language instructions
into machine code.

A feasibility study would concern itself with the number of software proce-
dures: not cramming as many software procedures as you can into one large
procedure. So that it is faster for the Central Processor to execute its instructions
in one place in the computer memory. Compared with breaking up a large soft-
ware procedure into smaller parts, and the Central Processor executes one part
in one location in the memory, then jumps over to another location to execute
the next part.

A feasibility study would concern itself with the data in each software module.
It would concern itself with the number of elements in each data: not the size of the
data in computer memory or some storage media.

A feasibility study would concern itself with the number of steps in each software
procedure: not the number of instructions of machine code in computer memory,
after the software procedure has been ‘compiled’ or translated from some program-
ming language to machine code.

A feasibility study would concern itself with whether these numbers could be
scaled, and how would these scale if more and more features were required. So that
if the software were to over-perform on the computer hardware, it could be scaled up.
And if the software were to underperform, it could be scaled down.

For example, one of the central items in the Event-Database Architecture
is a Relational Database. Now consider a software procedure which looks up a
Database Record in a Database. If the number of steps it takes grows linearly (or
slower) from a Database with 10 Records to one with 1000 Records, then it would be
a good indication of the feasibility of the Database. And by implication, this would
be a good indication of the feasibility of the Architecture. It is the prudent applica-
tion of many techniques, which build scalable components, that makes software
feasible. And none of these techniques depends on the knowledge of lower-level tools
or the computer hardware.

Often, in the Computer Games industry, the term ‘cross platform’ or ‘multi plat-
form’ would be banded about a lot, by the staff, at the beginning of the produc-
tion process. This would include Game Producers, Game Designers and Game
Programmers. Especially when discussing a feasibility study in a game design
or technical design. And if you are involved in an Event-Database Production
Process, then you may hear these term used by Database Administrators as well.

They would use this term to imply that some software tool, game-engine or other
software component, which could be used to build a game, could be used for more
than one computer hardware or platform. And they would imply this proves that
these software tools, game-engines or software components were scalable. But, in
fact, this proves nothing of the sort. Do not fall for this and believe the presence of

208 Event-Database Architecture for Computer Games

these ‘cross platform’ or ‘multi platform’ tools when building the Event-Database
Architecture makes it scalable and, therefore, feasible.

Instead, when they use these terms, they would be merely referring to the fact
that they expect the software tools, game-engines or software components to give
the best performance on the lowest common denominator. That is to say, they believe
these ‘cross platform’ or ‘multi platform’ tools were built with the characteristics of
the platform with the least resources in mind. And as a result, in theory, this should
give the best performance on other platforms, with more resources: or so they hope.

But, in practice, during production, this never happens. Instead, they end up
always building several, discrete versions of these ‘cross platform’ or ‘multi plat-
form’ software tools, game-engines or software components; one for each platform.
And they customise each one to give the optimum performance for each platform.
Each version will have subtle but significant differences which make it not compati-
ble or interoperable with another. Each version is not scalable. Instead of introducing
one scalable tool to the software production process, they have doubled, trebled or
multiplied even more the number of tools overall in the software production process.
And as a result, they have increased its complexity and reduced its feasibility.

The school of thought that believes software production is an art, and relies on
Reverse engineering, especially likes to use the terms ‘cross platform’ and ‘multi
platform’. Whenever they mention these ‘cross platform’ or ‘multi platform’ tools in
their feasibility studies they discount their effect on feasibility. They discount each
discrete version of tools, and software modules based on these tools, they will have
to use or build for each computer hardware, Operating System, game-engine or plat-
form. They discount the number of different versions of some of the tools or software
modules that would be required to build the software. And instead, they choose to
count all of these different versions as one. Thus, they cover up the complexity of
their software designs and the difficulty they have conceiving scalable software.

For it is very difficult, if not impossible, to measure the performance of scal-
able software, practically using the diagnostic lower-level tools of Reverse engineer-
ing. And hence it is difficult to judge its best performance. Since scalable software
would vary its performance, depending on how much resources were available. And
any diagnostic lower-level tools they used, to measure its performance, such as a
software module or library, would inevitably share the same resources, such as the
computer memory, Central Processor, Graphics Processor and so on, as the scalable
software under investigation. And that, in turn, would affect the measurements taken
up by these diagnostic tools, rendering them virtually useless.

So the school of thought that believes software production is a science and relies
on Forward Engineering, would only measure the performance of scalable soft-
ware, such as the Event-Database Architecture, through higher-level tools. The
transparency of the components of the Architecture and the natural language of the
Architecture helps to do this. You can describe and number the software modules
using Game Objects. You can describe and number the steps of the software proce-
dure using Events, Actions, Game Objects, Database Table, Records and Fields.
You can describe and number the software data and its elements using Database
Tables, Records and Fields. You can describe and number the relationships between
the Events, Actions, Game Objects, through the relationships of the Database

209Optimising the Results

Table, Records and Fields. And you can see how these numbers increase with more
software requirements. And thus, you can assess how scalable and hence how fea-
sible the Architecture is. You cannot get any of these metrics reliably from the
school of thought that believes software production is an art. You cannot measure
the number of software modules, for the files they write will containing multiple
software modules in the same file, for the sake of minimalism. You cannot measure
the number of steps of software procedures they produce, for the files they write will
contain obfuscated, undocumented, multiple instructions embedded in each other,
on the same line, again for the sake of minimalism. You cannot measure the relation-
ship between the software procedures or the software modules they produce for the
same reason.

Compare how the Event-Database Architecture and Event-Database
Production Process facilitates a feasibility study, with a normal ad-hoc Software
Evolution Process in the Computer Games industry, which begins also with a feasi-
bility study. The ad-hoc nature of the Software Evolution Process lends itself to the
idea that software production is an art. And thus, it is usually led by those who come
from that school of thought, who rely on lower-level tools and Reverse engineering.
When they claim to have assessed the feasibility of a software design, the reasons
they give will show their claims to be false. These reasons will not come from a
conception of scalable software.

Instead, these reasons will come from their knowledge of lower-level tools.
Especially the information they have gathered from using diagnostic tools to analyse
software products from the past or the characteristics of the computer hardware.
They will skip any examination of the higher-level tools that could be used to build
the software: such as the User Specification or the software design. And, instead,
they will directly jump to suppositions about the lower-level tools that could be used
to build the software.

In order to justify their suppositions, they will dismiss the higher-level tools
as trivial. But, if you were to investigate how they came to this conclusion, you
would find that it would be because they have ignored large sections of the User
Specification and the software design. And, instead, they would have only concen-
trated on the two or three parts of these tools, which they could use to market their
study. The parts chosen would be based on popular wisdom.

For Computer Games, the current popular wisdom is concerned with display-
ing photorealistic three-dimensional graphics, controlling Artificial Intelligence or
modelling physics in software. After looking at these parts of the software, from the
perspective of the lower-level tools, they would have come up with their assessment
of its feasibility. And as a result, the rest of the features of the Computer Game,
whose feasibility they ignore and marketability they find inferior, will be crudely
implemented during the production process. Hence, the entire feasibility study will
be a waste of time. Since, invariably, the demands of the parts that were unaccounted
for will undermine the feasibility of the parts they do account for.

In the Event-Database Production Process, a feasibility study is not just done
in the first step of the process. It is also done during the middle of the process as
well before each new feature is introduced to a game. And again, the two schools of
thought will approach this feasibility study very differently.

210 Event-Database Architecture for Computer Games

For the school of thought that believes software production is a science, they
would approach this study with the view of how each new feature could be built in
a scalable fashion, using scalable software or scalable techniques. How does the
number of Events, Actions, Game Objects, Database Tables, Records and Fields,
increase when the demands of this new feature increase? The Event-Database
Architecture lends itself to this method because you can get all of these numbers
easily from the Game Database.

For example, suppose the new feature being introduced was a spell which a
player can cast in the Game World, which produces a fireball at some point in the
World. And this fireball spreads out in a radius to a set distance from the epicentre.
And every Game Object engulfed by the fireball as it spreads can catch fire and be
damaged.

Now the number of steps, to start and end this fireball effect, is almost always
the same in the Event-Database Architecture. Whether the maximum radius is a
distance of 5 metres or 10 metres. There are only two things that change.

The first thing that changes is the radius of the Collision Mesh or Model around
the epicentre of the fireball, which the Physics Host uses to detect all of the Game
Objects within range of the fireball. And the second thing that changes is the length
of the Primary Proximity Event Record and the number of Secondary Proximity
Events of Game Objects engulfed by the fireball, that are on that list. The school
of thought that believes software production is a science can get all these numbers
easily from the Game Database. And use these numbers to assess the feasibility of
adding this new feature.

For the school of thought that believes software production is an art, they would
not be concerned with these numbers. They would approach this feasibility study in
the middle of the Event-Database Production Process as they do at the start of a
Software Evolution Process. That is to say, they will build the software by making
small, incremental changes or additions. And they will ignore the rest of the software
whenever they make each addition. So that the additions they make appear to be
trivial. Thereby enabling them to convince others of their assessment of the feasibil-
ity of some new feature, based on the knowledge of the lower-level tools: especially
the characteristics of the computer hardware. Subconsciously, at least, they will be
aware that they cannot convince anyone of the effect of these incremental additions
unless they make each addition appear to be trivial.

For example, by concentrating on a single instance of a fireball spell, in a compet-
ing product, and ignoring the rest of that product, they will claim that it would be
trivial to recreate that feature in the Computer Game they were working on. So that
they may convince others who were collaborating with them on that product that the
addition would be feasible.

But only after they have made this addition will they use their lower-level tools,
especially diagnostic tools, to analyse the true performance of that fireball spell in
their product. And then use the results of this analysis to retrospectively optimise
the performance for the fireball spell. Yet they will only do this in the case of that
single instance that they showed in the competing product to convince others of its
feasibility. They will not optimise the performance in the rest of the game. Since
they did not show the other instances of the fireball spell in the rest of the competing

211Optimising the Results

products. They will only optimise the performance in these other cases, in their
product, on an ad-hoc basis, as and when they are discovered by the Game Testers.
Who will, of course, have no systematic test plan for the product. And that in turn
was due to the absence of a complete User Manual to draw such a test plan from.
And that in turn was because there was no complete game design to draw such a User
Manual from, at the beginning of a Software Evolution Process.

A study of the feasibility of software depends on being able to identify the
number of different parts and the number of interactions between these parts. As
has already been mentioned, it does not depend on the components of the lower-
level tools: not even the components of the computer hardware. The complexity
of the components on the hardware level does not reflect the complexity of the
components on the software level. These two levels can be the same. But in all
probability, given the broadness of hardware applications and the narrowness of
Software Applications, these two levels will be different. So given its dependen-
cies, the accuracy of a feasibility study would depend on the completeness of the
description of the different parts of the software. That is to say, it would depend
on a complete software design.

Thus, given the concerns of assessing the feasibility of software, it is highly
unlikely that knowledge of lower-level tools (including computer hardware charac-
teristics) or Reverse engineering would either make an unfeasible project feasible, at
the beginning of the Event-Database Production Process. Or this would make an
unfeasible change feasible in the middle of the production process. Therefore, the
obsession of the school of thought that believes that software production is an art,
with these lower-level tools, should not be allowed to dominate the feasibility studies
at the beginning or middle of the process.

The number of parts involved in modern Computer Games, at the level of the
computer hardware, is just too great for anyone to comprehend. It takes teams of
skilled engineers to design a single microprocessor chip, such as Central Processor
or Graphics Processor, used in the hardware of Computer Games. And that hardware
can have up to 8 ‘Cores’ in the Central Processor and 36 ‘Cores’ in the Graphics
Processor, giving you a total of 42 ‘Cores’ or microprocessors. Not counting the
microprocessors in the other components. The documented measurements of the
performance of these microprocessors merely reflect their rudimentary perfor-
mance. Thus, the predictions based on knowledge of these low-level tools, contained
in these documents, merely reflect rudimentary predictions.

These measurements include, for example, the time taken by each microprocessor
instruction relative to the speed of the chip. Predictions based on such measurements
are misleading. For the speed of a chip does not reflect how it performs for any given
software design. Although two different chips may have the same speed, one may
perform better for a given software design, than the other.

Thus, the engineers of these microprocessors rely on benchmarks17 to statistically
analyse the performance of the chip. Unfortunately, each test has to encompass so
many factors that such statistics often prove unreliable. Some engineers design their
chips to perform better at particular benchmarks than others. And depending on how
much your software design overlaps with these benchmarks, the performance of the
software marginally improves.

212 Event-Database Architecture for Computer Games

But the engineers who make these microprocessors would not publicly release
information about the benchmarks which they target. Nor would it have occurred to
them that the choice of your software design should be defined by these benchmarks.

Often the school of thought that believes software production is an art, like to give
the impression that they know what these benchmarks are. And they may say words
to that effect when they give their assessment in a feasibility study at the beginning
or during the middle of the Event-Database Production Process. They believe this
qualifies them to select or reject a software design or software architecture, depend-
ing on how much of it overlaps with these benchmarks. But do not be fooled! They
can only speculate about what these benchmarks are.

Nevertheless, the fact that these benchmarks exist at all shows how absurd it is to
base predictions of the performance of software, including software architectures such
as the Event-Database Architecture, on the knowledge of the characteristics of the
computer hardware. Even the engineers who make the microprocessor chips that make
up that hardware know that it is a big leap. From their knowledge of how a chip behaves
to how it would behave at a higher level. It is a big leap from the instructions of micro-
processors to the components of a game design, or even a technical design.

It is a big leap from using a tool that views the instructions of a microprocessor,
or a low-level programming language, watches a particular part of the computer
memory or stops the software when it reaches a set point in a software procedure. To
understand the impact of a software design or software architecture on the computer
hardware. It is a big leap from reading diagrams of hardware circuits to building a
racing circuit in a Game World on that hardware. There is no formal method that
uses these low-level tools to make a prognosis.

The engineers of these microprocessors only use these low-level tools for diagno-
sis: either to test the chip or measure the rudimentary details of its performance, after
the chip has been built. They never use it for prognosis, which would be required to
give an assessment in a feasibility study at the beginning or during the middle of an
Event-Database Production Process.

When taken too far, an obsession with the performance of the software on a com-
puter hardware or platform can come to dominate a feasibility study. The school of
thought that believes software production is an art may for example insist that the
design of the graphics for a game, produced by the Game Artists, follow their design
principles. So that they can guarantee the feasibility of the game, by which they
mean they can guarantee the best performance of the software on that computer
hardware. But this can have an adverse effect on members of the staff in the Event-
Database Production Process who are not even required to write a software design.

Instead of simply focusing on meeting the requirements of artwork in the game
design, the Game Artist has to focus on the design principles and meeting the
requirements of the computer hardware. This produces two ironies.

The first irony is that the object of the feasibility study is to assess whether the soft-
ware requirements can be met given the time and tools available to make it. But the design
principles which act as a substitute for a feasibility study turn this objective on its head.
And makes it an assessment of whether the software meets the hardware requirements.

The second irony is that when the game design is incomplete, which is true at
the beginning of an Event-Database Production Process or a Software Evolution

213Optimising the Results

Process, these design principles produce a lot of waste. This is because improving
the performance of one feature of the game could easily be made redundant when
the game design has been changed.

.
But later on the game design is changed. A decision is made to put a huge block

of flats in front of the stadium. Obscuring its view from the player. And the game
engine will simply work out that the stadium is not visible because the new block of
flats obscures the view. And, therefore, not render the stadium.

And later on another decision is made that the player can enter the stadium and
see inside it. All of a sudden all of the work that the Game Artist made to gut the
stadium according to the design principles has been a waste of time and redundant.
And the Artist has to restore the interior of the stadium which was gutted earlier.

For those who view software production as a science, and rely on Forward engi-
neering, this would not be a problem. They would simply not use design principles
to enforce that the work of the Artists met the hardware requirements. To ensure
optimum performance of the game throughout production. And in turn make the
project feasible. In Forward engineering the issue of performance is addressed at the
end of the production process: not at the beginning. And, therefore, they would not
produce the waste or redundancy that design principles generate. When faced with
the introduction into the game design, of a 3D Model or Mesh of a football stadium,
with a high number of polygons, they would look to capitalise on this challenge with
the Event-Database Architecture.

If the high number of polygons of the stadium affected the rendering of that
area of the Game World, making it difficult to play in that area, then they would
simply replace the Mesh for the stadium with a temporary cuboid with just six
polygons, during the Event-Database Production Process. By editing the Game
Database and changing the Database Record for the Game Object of the sta-
dium. So that the Database Field that refers to the Record for the original Mesh
was changed to refer to the Record of a cuboid. Note that anyone who can edit the
Game Database can do this, not just the Game Artists who created that Mesh.
And you do not need any large complex general-purpose tool with a 3D User
Interface, like a game editor, to do this. Any simple tool which can edit the Game
Database can do this, even if it has no User Interface at all. And indeed you can
add a Game Object to automatically do this when it notices the performance of
the game deteriorating in that area.

For those who rely on Forward engineering in software production, the end of
the production process would be the time to deal with the performance of the game.
And when it came to the end of the production process, they could query the Game
Database and find all the Database Records referring to this cuboid Mesh. And edit
the Game Database again to restore the Records back to the original Meshes.

For example, suppose a Game Artist followed the design principles to build a 3D
Mesh or Model of a football stadium in a city in the Game World. The Artist then
painstakingly reduces the number of polygons in the Mesh by gutting out the inte-
rior of the stadium. So that it is empty, and only the facade around the outside of the
stadium remains. To produce the best performance of the software when rendering
that stadium in the computer hardware from a distance. In accordance with some
design principles.

214 Event-Database Architecture for Computer Games

If the Mesh still presented problems with the performance of the game on the
computer hardware at the end of production, because of the number of polygons,
then they would look to replace it with another version of the Mesh which had a
hollowed-out stadium.

If the game design were changed, that required the player to enter the stadium,
then they would look at adding a Primary Event for this, and a Game Object placed
at the entrance to the stadium which generates this Primary Event, to the Game
Database. This Game Object would generate the Primary Event when the player
approached the entrance from the outside.

They would also attach several Secondary Events to this Primary Event. One
of these Secondary Events would be sent to the Game Object of the stadium. And
it would replace the hollowed-out Mesh of the stadium with the original Mesh with
a complete interior. And the other Secondary Events would be sent to the Game
Objects all of the buildings around the stadium which were either not visible from
the interior or were too far away from the stadium. And these Objects would stop
themselves from being rendered by the Graphics Host. To improve the performance
of rendering the Game World, while the player was in the stadium at the end of the
Event-Database Production Process.

In contrast, the focus of the school of thought that views software production as
art will be on performance at the beginning of the Event-Database Production
Process. In the feasibility study at the start of it, you may find from time to time, a
discussion about the time complexity18 of software. On the surface, this may seem
like a theoretical discussion about the simplicity and efficiency of the software.

But the time complexity of software has nothing to do with the simplicity of its
composition. Software with a good time complexity can be far more complex than
one with a bad time complexity. And the greater the complexity of software, the
greater the number of errors it will have.

The time complexity of an algorithm in software also has little to do with the
efficiency of the software. When used correctly, the time complexity of an algo-
rithm is used to analyse how the theoretical steps of that algorithm would perform
in the worst case. It is not used to analyse how the algorithm would perform in the
best case. So there is no basis for using time complexity to speculate or infer any-
thing about how to get the best practical performance on some computer hardware.
Notwithstanding the fact that the time complexity of an algorithm does not account
for the hardware it will run on.

However, when those who view software production as an art consider time com-
plexity in a feasibility study, at the beginning of the Event-Database Production
Process, this will quickly degenerate into another discussion about the performance
of the software on the computer hardware. And they will take the opportunity to
examine the low-level performance of the software on the computer hardware. They
will take this opportunity to examine speculative low-level machine code or com-
puter hardware instructions that the software may produce to run on the system. And
indeed machine code or hardware instructions are the most efficient way of utilising
hardware. But at the same time, these instructions are the most obscure, least fault-
tolerant and most complex way to analyse and produce software. This is due to the
sheer number of instructions required to produce anything useful.

215Optimising the Results

So how would those who view software production as a science use the time
complexity of software? They would use it to select scalable algorithms that could
be used to build the game, with the Event-Database Architecture. To analyse the
steps of the algorithms. And their description of these scalable algorithms would not
mention the low-level machine code or hardware instructions. And they would not
use it to speculate about its performance on hardware.

3.3  THE DIDACTIC AND THE DIALECTIC

Didactic is a form of literature, art or design that is meant to be instructive, espe-
cially one which is excessively morally instructive. Dialectic is the art or practice of
arriving at the truth by the exchange of logical arguments. In philosophy, these argu-
ments take the form of a dialogue between two people with different points of view
on a subject. Both the Didactic and Dialectic are forms of communication.

The communication of those who view software production as an art tends to
take on the Didactic form. Whereas the communication of those who view software
production as a science tends to take on a Dialectic form. Since the former relies on
Reverse engineering that does not require a dialogue. The software producer can,
by using Reverse engineering to examine other competing products, understand to
a limited extent the software requirements. Whereas the latter relies on Forward
engineering which does require a dialogue. The software producer cannot start the
process until they have had a dialogue with the software user.

Communication is also an important part of the Event-Database Production Process.
It is one of the main goals of the Event-Database Production Process and the Event-
Database Architecture. To solve the communication which arises when you start a pro-
duction process without a complete game design. But depending on whether the software
project is led by those who view software production as an art, or as a science, the com-
munication of the leadership will take on a Didactic form or a Dialectic form. And this can
affect the ability of the Event-Database Production Process to meet its goals.

Those who view software production as an art, and rely on Reverse engineering,
find it a struggle to communicate their ideas. Since they rarely practice writing their
software designs and using their own words. So they adopt the instructive language
of the lower-level tools which aid Reverse engineering, including the instructions
of the manuals for the computer hardware or diagnostic tools they use. They have a
penchant for keywords, abbreviations, acronyms and contractions; and compounds
made from keywords, abbreviations, acronyms and contractions.

When they write their software designs, they find it hard to link two sentences or
two paragraphs together. They prefer a more heavily disjunct form, than free verse.
These include forms like an agenda for a meeting, a memorandum, a bill and other
forms of informal communication.

They find it difficult to engage in an informed Dialectic argument. More signifi-
cantly, they enjoy arguing from a position of ignorance, which fits into their Reverse
engineering philosophy.

For example, suppose there is a Bug which arises in some feature in a Computer
Game during the production process. The leaders of the process who view software
production as an art could investigate how that feature was built, before making

216 Event-Database Architecture for Computer Games

suggestions on how to fix a problem. But instead they will invite whichever col-
league was responsible for it to explain it verbally in a meeting. If the colleague refers
them to some written explanation or documentation for that feature, then the leaders
will not read it. And instead the leaders will insist on a verbal explanation and any
attempt to refer them to documentation as insubordination.

So the colleague agrees to explain the feature verbally in a usually informal
impromptu meeting. But this unsuspecting colleague has just walked straight into
the middle of an ambush. Where they will be interrogated and used as a diagnostic
tool to analyse the problem. In the middle of the colleague’s explanation of how that
feature was built, the leader will interrupt and start probing with confrontational
assertions and negative propositions.

For example, suppose the Game Testers discovered that a football stadium cre-
ated with a Mesh with a high number of polygons was added to the landscape of a
city at the beginning of the software production process. And sometimes much later,
after the beginning, the Game Testers noticed that the performance of the game was
suffering afterwards when the player reached a certain point in the city and looked
across the landscape. The leader who views software production as an art would
invite the Game Artist responsible for building the stadium and adding it to an
impromptu meeting. Their dialogue would proceed something like this:

Why can’t it be done like this?
Why can’t it be done like that?

‘Did you add this stadium?’
‘Yes!’
‘Why did you add it?’
‘It was part of the Game Design. The Game Designers thought it would be

cool’.
‘But the Game Testers found out recently that there is some performance issue

around that area’.
‘Yes! I have heard about that. I think sometimes when you look across the city

in that direction the game starts to hitch and Frame rate ----’
‘Why can’t you build a low polygon version?’
‘That version is what the Game Designers wanted. They saw it and we were

all happy with it’.
‘Why did they want that placed there? Why don’t you place it outside the city?’
‘I don’t know! But I suspect they had their reasons’.
‘Why don’t you hollow out the stadium and reduce the number of polygons’?
‘But what if the player needs to go into the stadium for some reason in the

future? Or they can see the stadium from some high vantage point?’
‘Why don’t you place some tall buildings around it so you cannot see it from

a high vantage point?’

217Optimising the Results

The leadership will not be merely making proposals. This will be evident by the
fact that their proposals will be in the form of negative propositions. And you cannot
prove a negative proposition: why something cannot be done.

This will also be evident by the fact that they will not wait for their colleague
to finish his or her explanation for introducing some feature, in this case, adding a
football stadium to the Game World. Their questions will also clearly profess that
they were ignorant about the subject. Yet when their colleague points out the adverse
effects of their negative propositions, they do not stop and try to get more informa-
tion. Instead, they come back straight away with more negative propositions.

Only two things stop this cycle. Either they get an immediate agreement from
their colleague to follow their instructions. Or their colleague inundates them with
the information which they were reluctant to seek, which requires them to recon-
sider. At this point they back off and either pretend that the whole subject was con-
fusing or they have nothing significant to say.

This form of communication is merely Didactic. In a Didactic communication,
the need to instruct is the driving force behind the conversation. The proposals or
negative propositions, in the form of questions, in the meeting, are rhetorical ques-
tions. The proposals are meant to be taken as instructions. To make the instructions
sound authoritative, the leaders who view software production as an art will replace
knowledge with supposition. They will make decisions about the game design,
technical design, data design or tools design in an Event-Database Production
Process. Without consulting the software users, players, Game Producers, Game
Testers, Game Designers, Sound Engineers, Game Programmers or the Database
Administrators. And without any materials before them.

Contrast this approach with a project led by those who view software production
as a science and rely on Forward engineering. If they invited the Game Artist to a
meeting, as soon as the Game Artist said

‘It was part of the Game Design’.

The leaders would stop the meeting right there. And they would investigate. They
would find the materials related to the game design and consult the reasons given
there for adding the stadium to the city, if any. They would consult the Game
Producers, Game Testers, Game Designers and Game Programmers to get their
views on the stadium. They would get each view of that subject, note them down and
note the contradictions. They would perform a comprehensive test of different views
of the stadium throughout the city. To find any other buildings or locations where the
performance of the game also suffered when the player looked across the city. And
after they have listened to the logical arguments, from the different views, they will
make an informed decision about the stadium.

They would do all this because this is what is required by Forward engineering.
This is what they are used to. That is to say, a Dialectic form of communication. This
requires a dialogue. This requires logical arguments based on two or more views
of the same subject to reach the truth. You cannot have logical arguments based on
different views of a subject, without listening to those views. This is how they will

218 Event-Database Architecture for Computer Games

begin the Event-Database Production Process. This will be how they continue in
it. And this is how they will end it or any arguments.

3.4  SOFTWARE ARTISTS AND SOFTWARE ENGINEERS

As mentioned in the previous subchapter, there are two schools of thought in soft-
ware production, and they have two different views of the first phase of the classic
software production life cycle, which is also the first phase of the Event-Database
Production Process. That is to say they have two different views of the feasibility
study and produce two different results.

In the Computer Games industry, the school of thought that views software pro-
duction as an art and relies on lower-level tools and Reverse engineering in the soft-
ware production process, produce partial assessments of the feasibility. Based on a
limited design and limited study, that just focuses on two or three of the most popular
areas in the production of Computer Games: photorealistic 3D graphics, Artificial
Intelligence and Physics.

The school of thought that views software production as a science, and relies on
higher-level tools and Forward engineering, produces a comprehensive assessment
of the feasibility. Based on a belief in comprehensive software designs and a con-
ception of scalable software. That in turn, along with practical tools and a realistic
schedule based on the software designs, produces feasible software.

Which of the two views of the first phase of the production process prevails
will affects the subsequent productivity of the rest of the staff, during the subse-
quent phases. And likewise, affect the rest of the phases of the Event-Database
Production process.

Ironically even though they do believe software production is an art, and, there-
fore, believe there is no complete software design, those who view production as an
art benefit the most from complete designs.

It is the complete and documented designs of the computer software they use, the
computer hardware and Operating Systems these run on, that gives them the knowl-
edge to practice their art. They love nothing better than taking advantage of other
people’s courteous designs to practice their art. Yet they hate nothing more than hav-
ing to write software designs for others to use.

They are incredibly productive in a software production process that is led by
the school of thought that believes software production is a science. As indeed are
the rest of the staff, the Game Producers, Game Artists, Game Designers, Sound
Designers or Engineers and Game Testers. They will all benefit from the transpar-
ency of the first phase of the Event-Database Production Process led by that school
of thought.

But if it were led by the school of thought that believes software production is
an art, the converse is true. The productivity of those who believe software produc-
tion is a science will suffer. As will indeed the productivity of the rest of the staff.
The only ones that will seem very productive will be those who believe software
production is an art and rely on Reverse engineering. And this characteristic of a
software production process, including the Event-Database Production Process,
the lack of productivity apart from a small band of staff who are proficient at Reverse

219Optimising the Results

engineering, and seem to have a superior knowledge of the process, is a characteris-
tic of a process led by those who believe software production is an art. Their produc-
tion processes favour lower-level tools.

For example, suppose you had a game based around exploring a city. And in that
city was a football stadium. Initially, the stadium was simply one of many buildings
in the city that you could see but not enter and interact with. But later on in the pro-
duction process, the game design was changed. So that the players could enter the
stadium. And when they walked through the entrance of the stadium, a crowd would
appear along the seats around the stadium. And a football match would begin on the
pitch in the middle of the stadium.

On the one hand, those who view software production as an art could edit the
game using a higher-level tool like one of the game editors or Events, Actions,
Database Tables, Database Records or Database Fields in the Game Database
of the Event-Database Architecture to do this. To add the Game Objects of the
entrance, the crowds in the stadium, the players playing football on the pitch. To add
Game Objects for the ball, the referee, the linesmen, the coaches of the two sides
and their substitutes sitting along the side of the bitch, the TV cameras and the crew.
To add the Meshes for Game Objects. To add the animation of these Meshes. To
control the Artificial Intelligence of the crowd, the players, officials, the coaches, the
substitutes and the TV crews. To add the Primary Events and Secondary Events
to control the Actions of all these Game Objects, including their animations and
Artificial Intelligence.

But this would be a slow and arduous task. And on the other hand, they could
perform the same task by buying or developing a new lower-level tool, like a pro-
gramming tool. To procedurally generate the addition of the Game Objects, the
Meshes and the animations. To control the Artificial Intelligence of the characters in
the stadium. Those who view software production as an art would choose the latter
of the two options, i.e. the programming tool, for the sake of the art of minimalism.

For example, you could use a programming tool to procedurally generate points
on the seats around the stadium. These seats would be contained within two rings
or ellipses with two radii. One larger radius for the outermost ring of seats and one
smaller radius for the innermost ring of seats. In between the outermost ring and the
innermost ring of seats, there would be other rings, at different heights. Beginning
at the highest elevation in the outermost ring, and dropping down steadily at equal,
to the lowest elevation in the innermost ring. You could write a programme to work
out how many rings there would be between the inner and outer rings using some
mathematical formula. And you could then generate points along each ring, with the
same spacing, that would act as the seats. You could then generate members of the
crowds at each point, facing the centre of the stadium.

You could have a Game Artist create a skeleton for the members of the crowd
which would be used to animate them. And create one animation of the skeleton
for the crowd sitting down, another for the crowd jumping up and another for the
crowd jumping up and down on the same spot and waving their hands as if a goal
had been scored. Then write a programme to animate the crowd depending on some
Artificial Intelligence which can detect when the players on the football pitch, are on
the attack, on the defence or have just scored a goal.

220 Event-Database Architecture for Computer Games

You could also have an Artist create four Meshes or Models for the heads, bodies,
arms and clothing of the crowd: one adult male, one adult female, one male child
and one female child. And then use the programming tool to either randomly add
these body parts and clothing to the skeletons of the members of the crowd. Or using
some mathematical formulas which make sure that all of the members of the crowd,
wearing the same colours as one of the two football teams, were grouped together
in the crowd.

You could also have a Sound Designer or Engineer generate the sounds to accom-
pany this. Sounds of the crowd singing, chanting the names of their team, cheering
and groaning could all be generated. And you could have a programming tool proce-
durally play these sounds in accordance with the reactions of the crowd, to the action
on the pitch, generated by some Artificial Intelligence.

You could also use a programming tool to procedurally generate points on the
football pitch in the centre for the players. By dividing the pitch into two halves, on
its longer vertical side. And then placing 11 players of one team at random in one
half and placing the 11 players of the opposition at random in the other half. Or using
some Artificial Intelligence to place them according to some random football forma-
tion, e.g. 4-4-2 or 4-3-2-1, that the coach was playing.

You could have a Game Artist create a skeleton for the football players which
would be used to animate them. One for the players walking. One for the players
running. One for the players walking with the ball at their feet. One for the play-
ers running with the ball at their feet. One for the players passing the ball. One
for the players shooting the ball. One for the players tackling for the ball. One
for the players jumping to header the ball. Then write a programme to animate
the players, moving them across the football pitch, depending on some Artificial
Intelligence which controls how the players attack, defend, tackle or score a goal,
in their formation.

Likewise, you could use a programming tool to procedurally generate points
along the side of the football pitch, for the two benches with the coaches and the
substitutes. This would be a series of points, next to each other running along the
longer side of the pitch. One set of points would be along the top half of the pitch,
between the rectangle of the pitch and the inner ring of the crowd. The other bench
would be along the bottom half of the pitch, on the same side, between the rectangle
and the inner ring. And then you could reuse the same procedure and process you
used to generate the crowd in the seats around the stadium to generate the coach
and substitutes on the bench. And you could reuse the same Artificial Intelligence
that controlled the reactions of the crowd in the stands to the actions on the pitch to
control the reactions of the coach and substitutes on the benches.

For the TV crew covering the football match, you could use a programming tool
again to procedurally generate a series of Waypoints along each of the four sides of
the pitch. These points would be spaced evenly along each side. And there would
be one cameraman, one soundman and one TV camera, on each side. And these
three would move together as one either at random between the points along each
side, keeping the football on the pitch, in the line of sight of the TV cameras, which
will always face the ball. Or these three would move according to some Artificial
Intelligence.

221Optimising the Results

Again you could have a Game Artist create a skeleton for the TV crew and TV
camera. One animation for them walking. One animation for them running. And
you could have the same Artificial Intelligence that controls their movement controls
their animations and switches between these animations.

To those who view software production as an art, there would be nothing wrong
with encapsulating all of these procedurally generated points in a low-level tool,
like a programming tool. They neither care that more of the staff are capable of
understanding and editing the Game World using a higher-level tool, like the Events,
Actions, Game Objects, Database Tables, Database Records and Database Fields
of the Event-Database Architecture. Nor do they appreciate the benefit of a large
collaborative project. They neither care that, even if it were trivial, there would be
less chance of introducing more errors by using a reliable higher-level tool, than
introducing new low-level tools that procedurally generates a Game World. Nor do
they care that the ability to use a reliable higher-level tool is a sign of advanced
engineering.

By encapsulating all of these procedurally generated points in a programming tool,
apart from the Game Programmers who know how these points were generated, no
one else can understand the Game World. How many seats were in the stadium? How
the number of seats in the stadium were generated? How the crowds were generated?
How to increase or decrease these numbers? How to change the layout of the crowd in
the stadium? How to insert gaps in the crowd for entrances from the outside into the
stadium, including the seating area? How to add greater variety to the composition of
the crowd? When do the crowd have a change of reaction to the action on the pitch?
From cheering to silence? From silence to chanting? When do the football players have
a change of pace from walking to running? From running to walking?

In contrast, those who view software production as a science, and rely on Forward
engineering, rely on higher-level tools. The highest-level tool is natural language.
Forward engineering begins with natural language, in the design documents pro-
duced at the start of the process. They cannot easily explain changes in natural lan-
guage made with lower-level tools, like a programming tool. They can more easily
explain changes in natural language made with higher-level tools, like a game edi-
tor or the Events, Actions, Game Objects, Database Tables, Database Records or
Database Fields. So in this case, they would choose the higher-level tool.

In that case, you would know how many seats were in each stadium. Each seat
would be added by creating a Database Record for its Game Object in the Game
Database. And you could query this Database and count these Records. You could
scale this up if that produces too many Game Objects, that need to be processed
or rendered at once, by having each Game Object represent groups of 100 or 1000
seats in the stadium.

You would know how these seats were generated. Each seat or group of seats
would be generated from a single Game Object in the Game Database whose
Database Records would refer to the same Mesh for the seat.

You would know how to increase or decrease this number. By adding more Game
Objects for more seats in the Game Database. And after that adding these new
Game Objects to the 2D or 3D Graphics List Record for the Graphics Host for
those new seats to be rendered.

222 Event-Database Architecture for Computer Games

You would know how the crowds were generated. Each member of the crowd
would be generated from a single Game Object in the Game Database. Whose
Database Record would refer to a position next to each seat. You could scale this up
if that produces too many Game Objects, that need to be processed or rendered at
once, by having each Game Object represent groups of 100 or 1000 people in the
crowd.

You would know how to change the layout of the crowd in the stadium. By chang-
ing the layout of the Game Objects for the crowd in the Database.

You would know how to insert gaps in the crowd for entrances into the stadium.
By removing Game Objects for some of the crowd covering those gaps, from the
Game Database.

You would know how to add greater variety to the composition of the crowd. By
querying the Database to find all the Database Records of the Game Objects of
the crowd which used a particular Mesh. And by editing these Records changing the
Mesh used to control their appearance and animation.

You would know when the crowd have a change of reaction to the action on the
pitch. By the Primary Events that were sent to the Events Host. When it was time
for the crowd to stand up, sit down, cheer or start chanting.

You would know when the football players have a change of pace. By the Primary
Events that were sent to the Events Host when the players started running or started
walking.

All of this would come from the Events, Actions, Game Objects, Database
Tables, Database Records and Database Fields of the Event-Database Architecture.

This will be true from the beginning of the Event-Database Production Process
whether it is led by those who view software production as an art or those who view
software production as a science.

That is to say, when it is led by those who view software production as an art,
there will be a recession. A recession away from higher-level tools (including natural
language) to lower-level tools. And with the receding of natural language, just as in
the Software Evolution Process, just as in the Tower of Babel, comes chaos.

Within this chaos, the sudden moments of clarity, and burst of high productiv-
ity, which they achieve through Reverse engineering, will look impressive to almost
everyone. And this impression will secure their objective. That is to say, they will
acquire an unnatural leadership, because of their impressive productivity, which they
could otherwise never aspire to.

They may well be masters of Reverse engineering. But being a good bricklayer
does not make you a master architect. Being a good mechanic does not make you an
automotive engineer. They may well seem productive in a process which has little
or no documentation through a lot of quick Hacks.19 They may well believe the word
Hacker20 is a complementary term, for someone who is extremely good at solving
problems. And this may well be its modern use. But originally it meant someone
who has no self-discipline and simply hammers away at a problem till he or she gets
a result.

In contrast, those who view software production as a science, and rely on
Forward engineering, will promote higher-level tools from the beginning to the end
of the Event-Database Production Process. As has already been mentioned the

223Optimising the Results

highest-level tool is natural language. And with this, they will promote dialectic
communication amongst the staff. And with that, they will promote the productivity
of all the staff. And with that, they will acquire a natural leadership.

Some may ask, so if using higher-level tools, like a game editor or the Event-
Database Architecture, produces higher productivity, then why is the Event-
Database Architecture any more advanced or better than a game editor?

Well, firstly, it is not that the higher-level tool in and of itself produces higher pro-
ductivity. It is the combination of the higher-level tool and natural leadership. That is
to say the leadership of those who view software production as a science who acquire
that natural leadership. So the question then becomes why is the Event-Database
Architecture more advanced than a game editor, assuming a production process led
by those who view software production as a science, in both cases?

Well the answer to that question is whether that game editor or the Event-
Database Architecture promotes higher-level tools or lower-level tools. Modern
game editors allow you to programme them using lower-level tools, i.e. program-
ming tools. And thus, they promote lower-level tools. A lot of the functionality of a
Software Evolution Process using these game editors in the Computer Games indus-
try is typically encapsulated in extensions of the game editors called ‘plugins’. Each
‘plugin’ is a software library created with a programming tool. A ‘plugin’ can be
used, for example, to procedurally generate a football stadium and its contents in the
Game World. And indeed one of these commercial ‘plugins’ created for this is called
the ‘Procedural Content Generation Framework’.

This ‘plugin’ allows you to generate points in the Game World where one or
more 3D Meshes or Models may be placed in the game editor. This may be placed
either at a random orientation aligned to these generated points. Or according to
some formula which you write using more lower-level tools, i.e. a programming
tool. You can use these to place static Meshes or Models of the crowds, seats,
players, coaches, substitutes, the bench, the TV crew and the officials in the foot-
ball stadium.

But you cannot use these tools to place dynamic or interactive Game Objects
in the Game World. Like players on a football pitch or members of a crowd who
move and are animated by some Artificial Intelligence. Nor can you edit the Game
Objects generated by these lower-level tools, like the rest of the Game Objects you
create in the game editor. You can only edit these with the same lower-level tools that
generated these Game Objects. You cannot edit these Objects with other higher-
level tools in the game editor.

In contrast, with the Event-Database Architecture, the Game Objects you
generate can be edited with higher-level tools. Just like any other Game Object
that has Database Records in the Game Database. And the Game Objects you
create can be dynamic and interactive, like players on a football pitch or the mem-
bers of a crowd in a stadium. In fact you could create a lower-level tool that gener-
ates the Database Tables, Database Records and Database Fields for the Game
Objects procedurally. And then use higher-level tools to edit these Game Objects.
As long as the lower-level tools and the higher-level tools can understand the open
data format of the Game Database, they can interoperate with each other. And as
long as the lower-level tools were only allowed to generate the Game Objects, not

224 Event-Database Architecture for Computer Games

to edit them, and instead that functionality was restricted only to higher-level tools,
then the Event-Database Architecture would continue to promote the higher-
level tools.

In the software architecture of LPmud, the Master Object is responsible for
controlling the loading of all the other Game Objects. And that would be an appro-
priate place for any lower-level tool that generates other Game Objects procedurally
to reside. Likewise, in the Event-Database Architecture for LPmud, the Master
Object would also be the appropriate place for any lower-level tool or code to reside.
That procedurally generates other Game Objects. The Master Object would be
an appropriate place to add any Actions that should be performed in response to
Secondary Events following on from any Primary Events to procedurally generate
other Game Objects.

Finally, the Event-Database Architecture is a more advanced higher-level
tool than a game editor because modern game editors are a product of a Software
Evolution Process. Thus, they suffer from the same flaws as the games they are used
to create, in another Software Evolution Process. They suffer from the same degen-
erative process, the same degenerative language and the communication problems
that the Software Evolution Process produces. The Event-Database Architecture,
however, is not a product of a Software Evolution Process. It, more precisely a game
built with it, is a product of an Event-Database Production Process that is apart
from the Software Evolution Process. And it has the higher-level tools and con-
structs, Events, Actions, Game Objects, Database Tables, Database Records,
Database Fields and Database Administrators that can help address some of these
problems.

3.5  OBSESSION WITH EFFICIENCY

Optimisation of software is about efficiency. As has already been mentioned, it is
about the efficient use of computer software or hardware instructions, data storage
capacity and data transfers. And the view of optimisation is one of the main differ-
ences between the two schools of thought in Software Engineering, one relying on
Forward engineering and the other relying on Reverse engineering.

The former is sceptical about the efficiency of a software whose software design
is not complete. And they do not believe that the software can be optimised or made
efficient until the end of the software production process when it is complete. The
latter is bullish about the efficiency of software. And they believe software can be
optimised while its software design is not complete, during the middle of the soft-
ware production process. And that this makes it easier to optimise at the end of the
production process.

Even though they lack the clairvoyance to see into the future. And whether
changes to the software design later on in the production process will make the
changes they made earlier on to optimise the software, redundant or inefficient.
Because alas they are just human. And like many in human society, they are blinded
by an obsession with efficiency.21 And this blindness can undermine the efficacy
of the Event-Database Production Process just as easily as it does the Software
Evolution Process.

225Optimising the Results

3.6  DIVISION AND CONSISTENCY

Even if you do not understand how to write software, you can understand how errors
in software come about. These errors arise from the same, universal reasons that
affect any complex project. Understanding this can help you avoid these errors. It can
also give you a better understanding of any process which tries to minimise errors.
This includes the Event-Database Production Process.

Errors can be minimised in any complex project by simplification. There are
two common forms of simplification used in engineering: division and consistency.
The first involves breaking up any complex design into smaller parts. The second
involves finding the common elements in each of these parts and constructing tools
which you can consistently use to make these common elements. Any engineering
project which cannot be simplified using these two methods will remain complex.
And, because it remains complex, it will inevitably have errors.

Hence, the role of an engineer in a project would be to simplify the process used
to build a product. And when you see any engineers trying to excuse the errors in a
product, because of the complexity of the process which they used, they will merely
be confessing their complicity. They will merely be admitting either their negligence
to simplify the process, incompetence to do so adequately or callousness to proceed
with production in spite of the fact.

Similarly, in Software engineering simplification, through division and consis-
tency, plays an important role. If the set of features required for software has been
divided into smaller subsets, then that would simplify the process of building it. A
simple software component could then be built to meet each of the smaller subsets
of requirements. This would also apply to the design of any tool used to build that
software. Having several small tools, each with a small subset of the features, would
be simpler to build than one large tool, with all of these features.

Therefore, during a production process for a computer game, when you see a
Game Designer, Game Artist, Game Producer or Sound Designer asking for more
and more features to be added, to the same software tool, they would all be act-
ing recklessly. So would any Game Programmer whom you see contemplating such
additions. These additions would make that tool more and more complex. And as
a result, this will introduce more errors. A good example of tools, with more and
more features added to them overtime, are the commercial game-editors used in the
Computer Games industry. These are large tools which have accumulated a huge
array of features overtime, which would be better implemented by smaller tools,
each with a subset of those features.

The origin of such excessive additions would be an obsession with efficiency,
about a process which used that tool. This obsession would have propagated a false
belief that combining many features into one tool would simplify that process. But
this obsession would actually produce inefficiency since these additions would intro-
duce errors. A better way would be for them to have a limit on the number of fea-
tures, in any given tool. And to spread these features across two tools, once this limit
was reached.

This same principle would benefit the features of any stage in the Computer
Game, which was being built jointly by a Game Designer and a Game Programmer.

226 Event-Database Architecture for Computer Games

If they added too many features to the same stage or level or part of the Game World,
they would be acting carelessly. For example, adding too many options for a player
to choose, onto the same menu, would be hazardous. So would be adding cosmetic
features to the game. These would namely be features that did not move the game
any nearer completion. Since either of these features had nothing to do with the User
Interface. Or adding these features, to the User Interface, did not give any more
information than what was already been presented.

So, for example, for a game with a complete game design, any addition to the
parts already described in that design would be cosmetic. And for an incomplete
game design, any addition which had nothing to do with the missing parts of that
design would also be cosmetic. So would be, for example, playing back complex ani-
mations, or long pieces of music, on a menu. These would not only quickly become
redundant, as the player’s concentration learned to ignore these features. But these
would add unnecessary complexity. And this complexity would introduce errors. It
would be simpler for them to divide these features between two or more stages or
parts of the Game World. So that the animation or music was, for example, heard or
played on another stage or part of the Game World. Or for the animation or music to
be heard or played on another menu, after the player had made his or her choices on
the current menu.

Dividing the features of a Computer Game, or any tool used to build it, into
smaller subsets would only have one merit. This would namely be in so far as that
division simplified the production process. But any such division that resulted in a
dependency between any two subsets, or increased the size of one of the subsets,
would increase the complexity of that process. And as a result, that division would
have no merit.

For example, suppose the Game Designer and the Game Programmer had decided
that the large set of options on a single menu, in a game, were to be split into two. But
one of the options was to be duplicated on the two new menus. This division would
have no merit. Since one option, on one of the menus, would be dependent on the
option chosen on the other menu.

Another example would be if the features of a software tool were to be transferred
into the Computer Game. Suppose the Game Artists had three tools that could be
used to build the animation for a game. One could be used to create and combine the
different Frames of the animation. Another could be used to convert the data for the
animation into an open data format, which could be both previewed and played back
by the game. And a third tool could be used to watch a preview before the animation
was added into the game. Now if these three tools were replaced by two new tools, to
make the process of adding animation more efficient, this replacement may have no
merit. It would have no merit if the features of the three tools were divided, amongst
the new tools, so that it increased the complexity of those tools or the game.

For example, one of the new tools could be used to create the Frames of the ani-
mation. And the other new tool could be used to assemble the Frames together. This
would record the animation in a closed data format that could only be played back
by the game. And the game itself could be used to preview the animation. Now the
Game Artist would only need to use two tools, instead of three, to add animation to
the game.

227Optimising the Results

But since this would add the ability to preview the animation, to the features of
the game, this would increase the size of its subset of features. And, therefore, this
would increase the complexity of the game. Also, one of the new tools would now
assemble the Frames and convert the data, for the animation, before it was played
back by the game. This would increase the complexity of the tools as a whole since
these two features were performed by two separate tools before.

It would be an obsession with efficiency that would lead to this conclusion.
Likewise, it would be an obsession with efficiency that would lead Game Artists to
waste time, producing what they would euphemistically call mock-ups, of the User
Interface, at the beginning of production. Even though these would be nothing of the
sort and would more closely resemble makeshift sketches. Their mock-ups would
lack the breadth and depth of detail to have any credibility with the rest of the staff.
A real mock-up would have a one-to-one mapping with all the features of the final
product: as in a mock-up of an aircraft or a car. But the mock ups they produce in the
Computer Games industry would only demonstrate a tiny subset of the first version
of the User Interface of the game, and a negligible amount of the final version.

Yet, even though these would be nothing more than makeshift sketches, these
mock-ups would find their way, virtually unaltered, into the final product. As the
production progressed, the Game Artists would just keep simply adding more and
more mock-ups to their previous ones. And if any of these were rejected, they would
respond quickly with more mock-ups.

The most graphic example of this has been games, which have been released, with
3D Models or images of the staff involved in its production. These models began life
merely as makeshift solutions, which were later meant to be replaced with original
Models. That is, these were meant to be replaced either with artwork inspired by the
original themes of the game. These would include the different parts of the Game
World, the characters and other items in each part, as these emerged during produc-
tion. Or the artwork was meant to be based on famous celebrities, actors or charac-
ters involved in the sport, film, book or genre which gave the game its theme: not
the staff. But the obsession with efficiency meant the mock-ups of the staff remained
unaltered. And the Artists merely became preoccupied with crafting other mock-ups,
afterwards.

So much so that the final artwork became one big mock-up, crafted by conflat-
ing at least three phases of production into one complex phase. The design, build-
ing and testing of the artwork would have all been rolled into one long, impromptu
composition.

All this waste would partly stem from their desire to fill the excess time, they
seem to have at the beginning of production, due to the concentration on drafting
the game design. That, along with the excess time they seem to have, during produc-
tion, due to the speed with which they produce mock-ups, would all pamper to their
obsession with efficiency. But the effect of this would be that they would increase the
complexity of their artwork and the production process as a whole.

Another effect of the obsession with efficiency, on the Game Artists, would be
that there would be little or no documentation of their work. They would rely on the
names they give the computer files they produce to document their mock-ups. And if
one mock-up was made up of several components, such as a large complex collection

228 Event-Database Architecture for Computer Games

of 3D Models, they would rely on the brief names and numbers they give each com-
ponent to make it self-explanatory. Even though this would erect a communication
barrier between Artists. Such that it would be impractical for one Artist to complete
the half-finished work of another. Instead, that Artist would find it easier to scrap any
existing work and begin from scratch.

Indeed, in the Computer Games industry, Game Artists have tended to be limited to
one small area of the game. Either they have been 3D Modelers restricted to modelling
characters. Or they have been Environment Artists restricted to modelling other items
in the Game World. Or they have been Character Artists restricted to animating the
bodies and the faces of characters. Or they have been Character Riggers restricted to
creating the skeletons or rigs for animating characters. Or they have been UI Artists
restricted to creating 2D items for a Graphical User Interface. Or they have Texture
Artists restricted to producing Textures for 2D or 3D Game Objects and so on. It has
been very rare for an Artist in one field to venture into another. And there has been
little occasion for one Artist to continue the work of another and little need to one
Artist to understand the documentation for the artwork produced by another. Thus,
fortunately most Software Developers have mitigated the waste that would result from
their Artists’ obsession with efficiency, at the expense of their freedom of expression.

But most Software Developers have yet to find a way to mitigate the waste pro-
duced by their Game Designers’ obsession with efficiency. Indeed, they have not
recognised it.

It would be an obsession with efficiency that would lead Game Designers to keep
adding more and more cosmetic features, to the game design, as production pro-
gresses. Their original design would be hastily drawn up, full of vague ideas and
riddled with implicit assumptions. Their desire to demonstrate, or see some dem-
onstration of, the final product would far exceed their capacity to describe any of it.
As a result, they would find themselves with loads of time and nothing to do at the
beginning of production. And they would search for ways to fill this void.

Invariably, they would settle on either coming up with more and more cosmetic
features: or rushing out ideas which have not been well thought through. Or they
would harass other staff to clarify these ideas. That is, other staff would either be
expected to quickly build and demonstrate parts of the game, based on the mis-
conceived ideas in their original design. Or the Game Designers would throw their
vague ideas at them, expecting the Game Programmers, Game Artists or Sound
Designers to somehow magically clarify these ideas in their heads for them.

Nevertheless as the ideas, in their original design, became clearer through these
demonstrations and exchanges, it would also become clearer, to the Game Designers,
that they had more time on their hands. Since, because of this obsession with effi-
ciency, they would quickly move on, assuming they were no longer required to clar-
ify their ideas to the other staff. Even though the demonstrations they would have
witnessed, from other staff, may have been filled with errors. And the exchanges
they would have had may still leave the rest of the staff with many implicit assump-
tions and uncertainties.

So, after the first phase of production, the Game Designers would fill the void in
the subsequent phases with more and more cosmetic features; based on the parts of
the game that had been built or discussed with other staff. But, unlike the first phase,

229Optimising the Results

in the subsequent phases, more and more features would be added concurrently that
require other staff to clarify with time. So more and more of the Game Designers’
vague ideas, full of implicit assumptions and uncertainties, would grow concurrently
with time. And, as a result, they would increase the complexity of their game design
and the production process as a whole.

This same obsession with efficiency would have the same effect on Sound
Designers and other staff. The only difference from the Game Designers would be
that Sound Designers’ obsessions would be limited to the areas of the game related
to music and sounds. And the obsessions of other staff would likewise be limited to
their respective roles. But, in the less formal production processes of the Computer
Games industry, even this restriction would be lifted. And any member of staff can
come up with vague ideas, full of implicit assumptions and uncertainties for any part
of the game design.

Along with division, consistency plays a major role in the simplification of soft-
ware projects. Errors in software are known as Bugs. These are features of the
software which exhibit behaviour which are inconsistent with the software design.
Features of the software which reuse other software tools in general (e.g. software
modules, procedures, data and libraries), in a manner inconsistent with how these
were designed, are known as Hacks. Hacks are always difficult to maintain because
Game Programmers use these inconsistently. The reason for the use of any given
Hack, in one part of the software, differs from another. So even if you were to guess
correctly the reason in one part, you would not be able to apply that generally across
the entire software. What is more, you would not be able to distinguish between an
intentional Hack and an unintentional Bug.

Thus, a Bug and a Hack share a close relationship. These both relate to an incon-
sistency in a design. The former relates to external, visible and software inconsisten-
cies. The latter relates to internal and invisible inconsistencies. A software with a
high degree of Hacks potentially has a high degree of Bugs. A symptom of software,
with a high degree of Hacks, is that fixing one part of the system would subsequently
cause a second part, which had not been altered, to inexplicably fail. This would be
because the second part of the system was using software, from the first part of the
system, in a way it was not designed for.

So, in a software production process, when you see someone asking a Game
Programmer to add a Hack to solve a problem, this would be just like asking for a
Bug to solve a problem. Or when you see a Programmer offering to Hack a solution,
this would be in effect giving the option of adding a Bug to the problem.

Similarly, when you see someone asking a Programmer to modify the software
to cater for a special case, this would be just like asking for a Bug to be added. It
would be in effect asking for a change which would be inconsistent with the software
design. However, it would not be a Bug if the software design were changed first.

The only other main avenue through which Bugs enter the software, excluding
Hacks, is through lack of precision. This occurs when the software has not been
written, by the Game Programmers, to do exactly what it was designed to do. It
either allows too broad a range of possibilities by, for example, allowing a player
to choose, at an earlier stage of a game, an option from a menu which should only
become available at a later stage. Or it allows too little a range of possibilities by, for

230 Event-Database Architecture for Computer Games

example, never letting that option become available. Or it misses out a step in a pro-
cess completely by, for example, doing nothing when the player chooses that option.
Or it performs the steps in the wrong order by, for example, making that option avail-
able on the menu, at every one of the earlier stages of the game, except the late stage
it actually was meant to be used in.

Having a complete software design would help stop such Bugs. But the alter-
native, an incomplete software design would cause such Bugs. So when you see
someone asking a Programmer to reserve a place for a behaviour, which has yet
to be designed, this would be just like soliciting the introduction of a Bug. This is
sometimes known as adding a Place-holder.22

Some Place-holders do function and serve some purpose, rather than doing
nothing. However, these Place-holders would be no better than those who do noth-
ing. Since the same principle applies when you see a Game Designer asking a
Programmer to add the basic details of a feature, which would be tweaked later. This
would be, in effect, like requesting for a Bug which would be tweaked later. Just as
with empty Place-holders, it would be asking for something to be added which did
not do what was actually required.

Finishing such a Place-holder would be just like fixing a Bug. Except this would
be a Bug introduced intentionally and typically at the start of a production process:
not at the end. This would be a Bug to which no one could apply any rigorous,
methodical procedure to test it, at the end of a project. Since this would be a Bug
which had no criteria, set by a game design or a technical design, to meet.

These kinds of Bugs, such as Place-holders which cannot be detected, and
Hacks which rely on using software tools inconsistently, undermine the software
and cause errors. The negligence to simplify software, through the division of its
features and of the tools used to build it, also contributes to these errors. However,
you will find the staff following a software production process willing use these
Bugs, and neglecting this division, on a day-to-day basis, in the Computer Games
industry.

In the industry, the primary reason for using these Bugs would be to make infor-
mal changes to a game with an incomplete game design. And the primary reason
for neglecting to simplify the software would be an obsession with efficiency, along
with the desire to add cosmetic features to such games. On the one hand, the great-
est and longest challenge, such projects face, will be completing the missing parts of
the game design. On the other hand, the easiest and shortest challenge will be either
to add cosmetic features to the parts that do exist. Or it will be to obsess over the
efficiency of the processes used to build these parts. Or it will be to make informal
changes to these parts.

So, naturally, reasons will be frequently found for meeting these easier and shorter
challenges, while ignoring the longer ones. And, the resulting product would be one
whose cosmetic appeal far exceeded its stability. One whose speed far exceeded its
practicality. And one whose set of customisable parts far exceeded the completeness
of this set. It would be a game with incredible attention to visible, audible and other
cosmetic effects. But it would also be one riddled with critical errors that made it
impractical to move consistently from any given point in the flow of the game to
another, from one part of the Game World to another. It would be even impossible

231Optimising the Results

to complete basic tasks, such as moving from the beginning of the game, to its end,
without a terminal failure.

Given such results, could there ever be a good reason to introduce errors? Through
Bugs, Hacks and Place-holders? Through an obsession with efficiency? Especially
considering that these would be errors you could control? There would be enough
sources of errors that you could not control, which you would encounter in a software
production process. These include errors in third-party software tools, computer
hardware, software data and human errors. So why add more? How can the staff
begin testing software with both intentional and unintentional errors introduced into
it? How can they distinguish between the two?

For in both the cases of Place-holders and Hacks, the effects of the introduction
of such errors are the same. Both obscure meaning and intentions. Both create a
communication barrier not only between the Programmer who wrote the software
and any other members of staff testing it. These also create a barrier between any
Game Designer or Game Producer who requested these errors and that Programmer.
These create a barrier between any other members of staff, who want to understand
the software and the Programmer. And these create a barrier even between any other
Programmer who had to maintain or fix these errors and the Programmer who wrote
these errors. So any process for producing software which relied on transparency
and communication would, naturally, counteract such Bugs.

Such processes include those which depend on a complete game design, techni-
cal design and other comprehensive documentation. These include processes which
depend on constant, open review of documentation, by all members of the staff, to
ensure its transparency. These also include the software production process, based
on Event-Database Architecture, which transparency and good communication
which comes from a well-defined Database.

There will doubtless be many more processes which you could encounter, which
cater for transparency and good communication. Whatever form these processes
take, each will exhibit at least these three signs:

1.	There would be more than one description of how any one part of the soft-
ware should behave. This will be to ensure that the initial description, of
that part, was clear and consistent.

2.	Bugs would be located without referring to the computer files, written in a
programming language, that were used to build the software. Instead, the
descriptions of how the different parts of it should behave, written in a natu-
ral language, would be good enough to locate a Bug. This would be done by
either simply observing the difference between these descriptions and what
actually happens. Or a Bug would be located by simply checking for any
discrepancies or inconsistencies between these descriptions.

3.	Bugs would be fixed by simply modifying the description, of how the faulty
parts of the software should behave, written in a natural language. The pro-
cess would automatically maintain consistency between these descriptions
of the software and how it behaves. So the process should automatically
translate any such high-level changes, to changes in the low-level compo-
nents used to build the software.

232 Event-Database Architecture for Computer Games

The Software Evolution Process, for example, fails all three of these criteria. Yet
when those outside of the Software industry, in the rest of society, encounter such a
process, where the communication between the staff seems incomprehensible, they
come to a false conclusion. They reach a similarly false conclusion when they come
across a production process which seems very complex. Namely, in the former case,
they conclude that the staff have managed to elevate themselves to a level where
natural language has become expendable to them. And, in the latter case, the staff
have become so intelligent that very complex processes have become negotiable to
them. Especially amongst the judiciary, many have been intimidated by such pro-
cesses and come to such conclusions, when cases of negligence have been brought
against Software Developers.

But there is no form of engineering which finds natural language expendable. And
the very fact that, from outside of any process, you cannot comprehend the com-
munication between the staff within it should be a sign to you that something was
amiss. That the process had been riddled with communication barriers: items which
defied description. That there had been some form of gross negligence to eliminate
those barriers. The perpetrators of which would include at least the leadership of the
staff along with some, if not all of the engineers amongst them, acting as accessories.

Furthermore, there is no form of engineering which builds on top of complex
production processes without producing errors. Such processes always produce a
seething mass of errors. Except that, in Software engineering, these errors would not
only manifest themselves in the form of visible Bugs but also in the form of invisible
Hacks and Place-holders.

3.7  THE MYTH OF SELF-DOCUMENTING CODE AND DATA

As many software products on the market will testify, it is possible to release
software by using a scheme of Bugs, Hacks and Place-holders.23 This is done by
substituting another level of communication for the broken down high-level commu-
nication, which this scheme causes. But this new level of communication relies on a
myth. This is the myth that the written software code or data itself can communicate
the ideas behind it. This is the myth of the self-documenting code and data. It is
important that an Event-Database Architecture should avoid this myth, in order
to provide effective communication amongst the staff, producing a computer game.

The myth originates from a common human failure amongst Programmers. And
due to the dependency on Programmers in the Computer Games industry, espe-
cially during a Software Evolution Process, it has been spread to other staff. Since
Programmers have by and large been given seniority as Team Leaders, the Game
Artists, Sound Designers, Game Designers and Game Testers have all been steadily
indoctrinated into this myth. Likewise Database Administrators, through similar
relationships with Programmers in other parts of the Software industry, have been
indoctrinated into it.

As has already been mentioned, many of those involved in a project to build a
game may suffer from an obsession with efficiency. Not least amongst these will be
the Programmers. And this obsession leads to a tendency to be hasty in their work.
More precisely, this leads to the desire to get the work done without knowledge of

233Optimising the Results

how exactly to do it before they begin. And as the old proverb goes, ‘Haste makes
waste!’24 Just as a project that begins with an incomplete analysis of the problem
(e.g. an incomplete game design) produces a lot of waste, so a Programmer (or any
other staff) who begins work, without understanding the problem they want to solve,
produces a lot of waste.

Rather than designing a software module to solve a problem, documenting it and
then building it, a hasty Programmer will dive in. He or she will start by building
it straight away, looking for quick practical results. Either the reckless presumption
would have been made that the problem would be so simple, that a full solution
could be formed mentally while listening to that problem. Or another equally care-
less presumption would have been made, that the partial solution being imagined
was a prelude to a full one. And this full solution would arrive by the time the
Programmer had finished writing the software. Unfortunately for the Programmer,
his or her intelligence will rarely match either of these presumptions. What is more,
there would be a big difference between considering a problem to be simple, which
only involves your understanding, and making it simple, which involves the under-
standing of others as well. The prudent presumption you could make, if any, espe-
cially when working in a team, would be to always adopt the latter approach.

Inevitably, the software module which the Programmer hastily produces, in
this manner, ends up changing again and again. A point will be reached where it
becomes clear that some level of documentation would help. If not from education,
he or she would know instinctively from the experience of having gone back to old
work that some level of documentation helps. Since the module keeps changing so
rapidly, however, the Programmer would foresee a lot of wasted effort documenting
it fully. What would not be apparent to the Programmer would be the folly of the
initial presumptions made about his or her abilities.

So, at this point, the myth of self-documenting code and data enters. The myth
begins with the premise that programming languages (and the software used as tools
by other staff) have features which allow you to express yourself in familiar terms,
similar to natural language. These features include

1.	 Interfaces with instructions which have a similar meaning in spoken or
written form (e.g. IF, WHILE, DO, FOR, EXPORT, IMPORT, OPEN,
CLOSE, LOAD, SAVE, SELECT and EDIT),

2.	 the use of mathematical notation (e.g. +, - and =),
3.	variable names for software data, which could be modified to fit into spo-

ken or written form,
4.	variable names for software procedures, which could be modified to fit into

spoken or written form and
5.	variable names for software modules, which could be modified to fit into

spoken or written form,
6.	variable names for the computer files used to build the software, which

could be modified to fit into spoken or written form.

Since programming languages (and other tools used to build software) have these
features, all you have to do will be to make sure the names you give your software

234 Event-Database Architecture for Computer Games

data, procedures, modules and computer files fit into naturally spoken or written
form. You can enhance this further by adopting a Naming convention,25 which
ensures that the style of expression will be consistent throughout the software.

Thus, you can produce self-documenting code and data which describes the com-
puter files, the software modules, the procedures or the data in a natural language.
The purpose of a computer file or software module should be obvious from its name.
The use of data or a procedure, within a module, should also be obvious from its
name. The steps of a procedure, written in a programming language, should be obvi-
ous from each line of the instructions and the names of the data or computer files
referred to in each one.

The more extreme form of this myth have been Naming conventions which even
go so far as to claim to catch errors. For example, the Hungarian Notation26 has
attempted to catch errors by suggesting a convention which described the differ-
ent types of data (e.g. numbers, words, dates, ages, times, costs, first names and
surnames). As well as this, it has also suggested describing the size of data (e.g. the
range of values for a number, the length of words, the range of dates, ages, times,
costs, the length of first names and surnames). And it has suggested describing the
scope27 of data. This determines whether it can only be used locally, in a software
procedure or a module, or globally, across procedures or modules. The idea has
been that, by making these things patently obvious, you can avoid errors caused
by transferring information between data of incompatible type, size or intended
scope.

Naming conventions, like the Hungarian Notation, have been the highest point
that the myth of self-documenting code and data has reached to date. The idea that
you could develop a scheme which has the ability to catch some errors has been
very alluring. However, at this height, the myth begins to become unstuck. Despite
its promise, Programmers have not gotten away from the fact that a second form of
documentation has still been required. Wherever a Naming convention such as the
Hungarian Notation has been adopted, you would also find some formal scheme for
adding descriptions to the software data, procedures, modules and computer files.
This would normally be in the form of prominent Comments,28 in natural language,
next to each data, procedure, module or at the top of each computer file.

For other staff, such as Game Artists, the formal scheme would involve a table
including a column listing the computer files the Artists were producing. And next
to that column would be another listing brief descriptions of what artwork was con-
tained in each file.

The necessity of these formal schemes would be due to the fact that, from experi-
ence, those who adopted this Naming convention have known about its inadequacies.
But still enamoured by the myth, they felt compelled to patch up its flaws.

So Programmers would have reverted back to an old technique that has been
used to describe software since the inception of programming languages; namely
the ability to include Comments. Likewise others, such as Game Artists, would have
reverted back to manually cataloguing their artwork, with simple tables typed up on
the computer.

Thus, through Comments and other similarly peripheral techniques, the belief in
the myth has continued. It has meant that Programmers could continue to believe,

235Optimising the Results

that they do not have to ever put pen to paper and think away from the computer
screen. They could continue to hurry their work and get immediate feedback.

In fact, they could use Comments as a means of avoiding having to write User
Manuals too. By simply extracting the Comments, from the software code, they could
feed these directly into a document that the software user could read. Indeed, there
have been software tools which have been written to do just that, such as DOXYGEN.29
These have collected the Comments, from the software code, and converted these
descriptions into a document in a presentable data format (e.g. the Hypertext Markup
Language or HTML30). This has allowed User Manuals and other documents to be
compiled, with many passages and words highlighted in different colours and fonts.

Hence, the software has been automatically documented as the practitioners of
self-documenting code and data have improvised with it. And by that characteristic
and others, they have shown that they clearly belong to the second school of thought
described earlier. Namely, the school that believes software production to be an art;
an art of minimalism. To them, the myth of self-documenting code and data, the
Naming conventions and the formal schemes for laying out descriptions have all
embodied the aesthetics of this art: the art of minimalism.

But this art of minimalism is just a form of laziness. This laziness leads them to
find the quickest way to do their work. This laziness leads them to another form of
an obsession with efficiency.

This laziness makes them hate writing documents and designs using natural lan-
guage and then writing code based on the designs with programming languages. So
they find a way to combine the two into one. They find a way of writing code in
programming languages and designs in natural language at the same time. And this
inevitably results in them abusing features of programming languages and misusing
them in a way they were never intended. But which they think is ingenious. Or as one
Programmer in the Computer Games industry put it:

Take for example the C++ programming language which is widely used in the
Computer Games industry and Software industry. It is easy to be intimidated by the
terminology of this programming language. But a lot of terminologies are just dif-
ferent words or phrases for the same thing. Take for example these features of the
programming language:

1.	Precompiled Header Files (which are just composites of code or C++
Header Files)

2.	Unity Source Code (which are just composites of code or C++ Source Files)
3.	Templates
4.	Macros
5.	 Inline Functions
6.	Pure Abstract Classes
7.	Abstract Classes

‘…laziness is the greatest virtue that a Programmer can have…’

236 Event-Database Architecture for Computer Games

It does not matter if you do not know what these terms mean. The only thing that
matters is that you know that these are abused for the same purpose. That is to speed
up the production of software.

You can abuse all of these features to combine two or more steps of the software
production process into one step.

You can either try to conflate the documentation or design of a software compo-
nent with its implementation (Templates, Macros, Inline Functions, Pure Abstract
Classes).

Or you can conflate the implementation of two or more software components, or
instructions, into one step and skip the documentation or design of these components
or instructions (Templates, Macros, Inline Functions, Abstract Classes).

Or you can conflate the translation of multiple components, from the program-
ming language to machine code, into one step (Precompiled Header Files, Unity
Source Code).

And because you can do this, these features are very attractive to the lazy practi-
tioners of the art of minimalism. That is so to say those who believe in the myth of
self-documenting code. That is to say those with an obsession with efficiency.

Yet all of these features make the software production process more complex to
develop, diagnose and maintain. And as a result, the abuse of these features produces
more errors. So the best advice is to keep their use to a minimum and avoid them
completely if possible.

However, because those who believe in the myth of self-documenting code
love these features, and they abuse these features, you will find it all over the code
they produce. They make out their prolific use of these features as a sign of their
‘advanced’ understanding of the programming language. When they interview other
Game Programmers, or they write job descriptions, they are eager to find candidates
with a similar obsession with efficiency, who consider the use of these features as
a sign of ‘advance’ Software engineering. When in fact it is has nothing to do with
Software engineering let alone a sign of ‘advance’ Software engineering but a sign of
their degeneracy (see the definition of Software engineering in the Glossary).

3.8  SELF-DOCUMENTING USER MANUALS

Comments are very versatile tools with many benefits. One benefit is that they pro-
vide a way of documenting software quickly, allowing you to insert documentation
right next to the software code. Another benefit is that you can extract them from
the code and use them to create automated User Manuals. You can use them to write
the software code for Host Modules and Game Objects of the Event-Database
Architecture. And this can affect the Quality Control of the Event-Database
Production Process.

Nevertheless, beginning with Comments, you can see how absurd the myth of self-
documenting code and data is. From automated User Manuals to Naming conven-
tions and, finally, the similarity between programming languages, User Interfaces
and natural language, the myth is built by adding one fallacy onto another.

Ironically, as well as helping the myth, Comments expose more than anything else
how absurd the myth is. Through Comments, Programmers have access to natural

237Optimising the Results

language to describe themselves. Natural language has evolved over thousands of
years and has a lot of flexibility. Programming languages have evolved in just over
half a century and are rigid. The inadequacies of programming languages are self-
evident when it comes to writing manuals.

Those who believe and those who do not believe in the myth both revert to natural
language to write User Manuals. A User Manual describes why you would use a
piece of software, how you would use it and, sometimes, for better explanation, how
it will work. A programming language, however, can only at best describe how it
will work. So, according to the myth, in order to produce automated User Manuals,
Comments should be inserted into the computer files, and written in a programming
language. And these should be attached to the software data, procedures and mod-
ules. Such that a third-party tool could extract these to document all the components
of the software (i.e. the software data, procedures and modules). But these docu-
ments would be inferior to those written independently of the software.

The Comments used to produce automated User Manuals will invariably lack con-
text. This will hinder the understanding of these documents. This will be because, in
order to develop complex software, it will be broken up into small software modules
to simplify the task. Each module will only be assigned a small part of the overall
task. Each module will then be broken down further into a small set of procedures
and data. The Comments, which the software user reads in the User Manual, will
only describe the small part which each data, procedure or module plays in the over-
all scheme. So the user will find it difficult to tell why each should be used or how
these should be used.

Programmers who believe in the myth of Self-documenting code invariably find
it tedious repeating the context in which a set of software data, a procedure or a
module will be used. In any given module, a set of data will be used more than once.
In a project, a procedure or module will be used more than once in different contexts.
So it will be far easier to simply mention what type of data each one will be, and
how a procedure or module will work than to describe why and how it will be used.

As a result of this, any User Manual which relies on Comments extracted from
the code will be difficult to understand. Any description of data will rely on knowl-
edge of the software procedure, or module, these will be part of. Any description of a
procedure will rely on knowledge of the module it will be part of. Any description of
a module will rely on knowledge of the software or software library it will be part of
or its uses in other software modules. Yet, despite all these interdependencies, each
description of the automated User Manual created from Comments will often be set
out on a different page.

When, for example, all the Comments about a set of software procedures, in
a single module, have been put on the same page, there will be nothing to tie the
descriptions together. The descriptions will not be ordered by how the procedures
should be used, but the incidental order in which the procedures were added. The
descriptions will not be grouped by the particular task the procedures should be
used for, but the incidental grouping due to modules they were placed in. Using
such a User Manual will be like trying to study a forest by examining the indi-
vidual leaves of the trees. It will be like trying to understand a book by reading the
index or the glossary pages.

238 Event-Database Architecture for Computer Games

If you wanted to produce a comprehensive automated User Manual, you would
inevitably come into conflict with those who believe in the myth of self-documenting
code. A good User Manual would be easy to understand by all, explaining why and
how everything should be used. It would have a sensible thread linking the chapters
and paragraphs. But this would require verbose Comments. To those who believe in
the myth of self-documenting code, this would be a point of contention.

Comments should only be used for complicated sections of the software code,
just to annotate these: or so they believe. The fact that you would produce a lot of
Comments would be taken as a sign of over-complicated code in their mind They
would not bother reading the Comments. The mere sight of the descriptions would
trouble their aesthetics of what they believe to be an art of minimalism. If you added
a Comment for a simple instruction, which was obvious to anyone with their level of
experience, they would find it irksome. Even though such Comments would, at worst,
be underlining the Naming convention they would be using. And, at best, it would
be providing a context for any obscure software data, procedure and module which
was being referred to.

In contrast to those who do not believe the myth, when they write Comments they
adopt a minimalistic style. And, instead of using the words of a natural language,
they adopt sparse words from technical materials. That is to say, they adopt the
words of programming languages, Naming conventions, the manuals of computer
hardware, the instructions of microprocessors and other lower-level tools. And they
fill their short Comments with abbreviations, acronyms, keywords and contractions
from these materials: along with compounds made from these abbreviations, acro-
nyms, keywords and contractions. Thus, they negate the advantage of being able to
describe software, in natural language, through Comments.

Although the other staff, such as Game Artists, Game Designers and Testers, do
not produce automated User Manuals from their work, it is only because they do
not have the technology. If they had the technology, they would. Those of them who
believe in the myth of self-documenting data, nevertheless, do show their propensity
for such documents in the User Manual they help write for the final game.

Take the Game Artists who believed in the myth, for example. To them, it should
be possible to produce items on menus, or in the Game World, whose reason and pur-
pose were self-evident. And thus did not require an explanation in the User Manual.
In the Computer Games industry, they would get ample opportunity to put this the-
ory to the test. Since inevitably the large gaps in the game design at the beginning
of production, would leave large gaps in the User Interface, which they would be
expected to fill. And if you were to pay careful attention to the pages of the Manual,
if any, describing their work, you would recognise the same symptoms that can be
found in the automated User Manuals of Programmers.

That is, when the Artists create a design document or a mock up of the User
Interface or a location of the Game World, you will find that the paragraphs of that
document, the components of that User Interface or location in the Game World has
no context. You would not find a common thread linking the paragraphs and clauses
in these documents, or a theme in the annotations of the items of the User Interface
or location in the Game World. You would find the propensity for abbreviations,
acronyms and keywords: and compounds made from abbreviations, acronyms and

239Optimising the Results

keywords in the documents and annotations. And you would find bar charts and line
graphs with either the label for the X-axis, the Y-axis or both missing. You would also
find lots of items on their menus, or locations in the Game World, with short pieces
of annotations literally attached to each one. But this text would be hidden. And it
would only appear either automatically, at set times. Or it would show itself when the
item, it was physically attached to, was selected on that menu or approached by the
player in that location. They believe that these annotations will make the items on
the User Interface or the items in the location of the Game World self-explanatory.

And thus, the software user would be expected to metaphorically understand
the forest by studying the individual leaves of the trees! That is, the player would
be expected, by the Game Artist, to understand the Game World by exhaustively
uncovering these pieces of annotations and deducing the basic functions of items on
a menu or items in a location from this: rather than examining any coherent User
Manual.

3.9  SELF-EXPLANATORY NAMES

The agitation, which those who believe in the myth of self-documenting code and
data have with too many Comments, comes from the primacy they give to the soft-
ware code. This primacy even affects the way the believers will informally com-
municate between themselves and other staff. They will find it hard to talk about
software data, procedures, modules and computer files without literally using what-
ever cryptic Naming convention they have come up with. This will include crude
enunciation of the unpronounceable syllables in the names formed by this conven-
tion. They will use these names to refer to the data, the procedures and modules
documented in any automated User Manuals they produce; believing these to be
self-explanatory.

You too may be tempted to use these Naming conventions to write the software
code for the Game Objects and Host Modules of the Event-Database Architecture.
Or to select the names of the Database Tables, Records or Fields in the Relational
Database used by the Architecture. But despite the promises in this respect, Naming
conventions deliver very little. And they inevitably lead to the degenerative natural
language in a software project, which the Architecture is meant to avoid.

Firstly, the assertion that anyone will be able to tell the use of a piece of software
data, a procedure, a module or a computer file from its name is false. Any name
only gives you an abstract about its subject. It is a summary of information about a
subject. It is a short substitute for the information you know about a subject.

Like all summaries, a name is incomplete and has some ambiguity. Like all
substitutes, it can be replaced by other substitutes, and there is no innate relation-
ship between a name and its subject. There is only a subjective relationship which
depends on how a person looks at that subject. In the context of the Computer Games
industry, it depends on how a Database Administrator or Game Programmer looks
at the problem which he or she wrote the software for. Or it depends on how a
Game Artist looks at a piece of artwork which had to be created. No two Database
Administrators, no two Programmers, no two Artists and no two staff look at a prob-
lem in the same way. After long periods, even the same Database Administrator or

240 Event-Database Architecture for Computer Games

Programmer would not look at the same problem, in the same way. Neither would
the same Artist look at the same work of art, in the same way.

The names you choose to describe a subject depend on the extent of your knowl-
edge of that subject. The more you know, the more concise your choice will be. But
the very reason Programmers, for example, will revert to using self-documenting
code, in the first place, will be because they lack this knowledge. They do not know
how exactly they will solve a problem with the software they are about to write. And
they will be trying to save time, by not having to update a separate software design
when each attempt fails, and they have to rewrite the software. So the ambiguous
names they produce, in the self-documenting code, will naturally reflect their uncer-
tainty about their work.

They could go back, once the software had been finished, and revise the names
they had chosen. But the haste, which makes them adopt the myth of self-docu-
menting code in the first place, will not allow them to go back. Instead they are
in a hurry to move on to the next project Thus, they compound the difficulty of
understanding their work. Not only do you have to understand the names they
use, with little description of their perceptions of the problem they were trying
to solve. But what little description there will be, will be done with vague names
that reflect their past state of confusion. The names will either be too general. Or
some names will be too identical to one another. Either you would not be able to
tell which subset of the information you know about a subject, was being referred
to by its name. Or you would confuse one name with another. Either you would
require a word or a context to qualify the name of each subject. Or you would
require additional words appended to each name so that you could distinguish
between the names.

But once the names begin to require qualification, then the assertion that anyone
will be able to tell the use of a piece of software data, a procedure, a module or a
computer file from its names becomes false. It would not matter if you required
additional words, to act as qualifiers, in the name of each subject. The result would
be another name. Since a name is only a summary of information, if other staff use
it in a way not covered by the summary, they would not see anything wrong with it.
As long as the name was unique, and could be used to identify a subject, there would
be no reason to change it. People will never see a reason to change it.

When you start adding a qualifier to each name, the names grow beyond being
short substitutes. The names start becoming small phrases and sentences. The way
the names should be chosen starts becoming a language in its own right that requires
grammatical rules to be consistent. Each name ceases to rely on the programming
language to provide its context, in the case of Game Programmers. Neither does it
rely on the tools the other staff use, or their project, to give it context. Instead the
name relies on grammatical rules to provide its context. And these rules introduce
a new language, which is neither a natural language nor a programming language.
And as a result, it slows down both the Programmers’ writing and reading of the
software. And it slows down any other staff creating or editing the Game data.

For example, suppose the staff had to build a game involving racing cars. And a
Programmer had to write a software module which would be used to create a car,
move it around in the Game World and manage its different parts. This module will

241Optimising the Results

have a piece of data that will hold the properties of the car. The information will
include the position of the car, its speed, the type of engine it has, the position of its
wheels, the number of doors it has, and whether each door is open or closed. It will
be reasonable for either the module or the data to be called ‘Car’. You could either
call the module ‘Car’ and qualify the data as ‘Car Data’. Or you could call the data
‘Car’ and qualify the module as ‘Car Manager’. It would be purely arbitrary as to
why one choice should be made over the other. You would require rules to ensure
consistency.

Suppose both the software module and the data were to be qualified as ‘Car
Manager’ and ‘Car Data’, respectively. In this case, as previously, it would be clear
that you wanted to draw a distinction between the module and the data. But it would
not be clear as to why you wanted to do this. Would it be because one was a subset
of the other? Or would it be because both were mutually exclusive members of the
same set?

Consider the case where two modules were to be used to control a car wheel and
a car door. Each would be called ‘Car Wheel’ and ‘Car Door’, respectively. In this
case, the similar names would refer to the fact that these were both part of a set of
car properties. But both were mutually exclusive. This would be unlike the case of
the ‘Car Manager’ and the ‘Car Data’, where similar names meant one was a subset
of the other: one was used by the other. Only by more grammatical rules could you
make a distinction between both cases.

A car was chosen in this example to make it obvious how someone, who did not
know anything about cars, could be mistaken by relying on the names of software
data, procedures, modules and computer files. Most people do know what a car is.
So they can see when someone, who does not know, has made a wrong assumption.
If an obscure field were chosen as an example (e.g. modelling a physical world or
creating sound effects in software), then the same people, who do know what a car
is, would make the same wrong assumptions.

You could adopt grammatical rules to prevent people from making wrong assump-
tions. But only if you were seriously intent on creating a new language. However,
Programmers, Game Artists and other staff, who believe in the myth of self-docu-
menting code and data, will casually adopt such rules when they notice the flaws in
a Naming convention. Although they would have neither the expertise, the time nor
the patience to create a new language. And if such a prospect had crossed their mind,
when they adopted the Naming convention, they would never have embarked on the
venture in the first place.

Instead, their casual adoption of these grammatical rules will merely reveal their
hypocrisy. For the rules they adopt will be used to cloak themselves with the appear-
ance of self-discipline. But, at the same time, it will be hiding the impatience, which
will be the source of the myth of self-documenting code and data.

3.10  SELF-CHECKING DATA

The second fallacy involving Naming conventions is the assertion that these will
help catch errors when writing software. Prefixing or suffixing the names of soft-
ware data, or computer files, with letters which describe the type, the size and the

242 Event-Database Architecture for Computer Games

scope of that data will help you catch some errors. These will be namely those errors
caused by transferring data between two incompatible types.

You too may attempt to use Naming conventions to catch errors in how you write
the software code for the Host modules or Game Objects of the Event-Database
Architecture. Or how you select the names of the Database Tables, Records or
Fields in the Relational Database it uses.

But the ability to give names to data was not invented for that! It was invented so
that data could be abstracted.

That is to say, it was meant to give Database Administrators or Programmers the
ability to name data using natural words from a natural language. These words were
meant to have meaning to ordinary people: not computers. So that they would use the
data as naturally as possible, when writing software, without worrying about how
it was stored on the computer system. So that they would not have to worry about
what any underlying computer software or hardware, of the system, was doing with
that data.

It was clear from the beginning that the semantics of programming languages
would reflect very little of the semantics of natural language. And as a result, these
would be difficult to use. So it became important that the syntax or the words, includ-
ing the names of the software data, reflected as much of natural language as pos-
sible. In the first programming language,31 the ability to name data was intended for
mathematicians to describe algebraic variables in formulas they wanted a computer
to process. Later on, it was extended to be used by Programmers to describe any
problem. It was meant to serve the encapsulation of an external problem within a
computer system. It was not meant to serve the internal problems of the system, in
which the software data was being used. Although this is well in the past, many
Software industry commentators32 continue to provide reminders, of the need to
separate the dependency between different parts of a complex system.

Of course, back then as now, at some point someone had to make sure that errone-
ous data were not entering the computer system. But the tools used for programming
could only check so much. Since these were made for a very wide variety of prob-
lems. And the Programmers, who believe in self-documenting code, will be reluctant
to include checks, into the software, because they will be in a hurry. Therefore, they
will revert to Naming conventions, such as the Hungarian Notation, which forces
other staff to become aware of how data will be stored on the computer system. So
that errors may be prevented when using that data.

But in doing so, these Programmers will negate the advantages of being able to
name data. And they will also excuse themselves from the need to add checks for
errors in the software, thus undermining its robustness. Likewise, the Game Artists
and other staff who use cryptic Naming conventions to avoid possible errors caused
by confusing computer files, or Game data, with natural names, will negate the
advantage of being able to name that data. And they also will excuse themselves
from checking for errors in it.

Nevertheless, as far as its ability to even prevent errors is concerned, Naming
conventions, such as the Hungarian Notation, will be far from effective. This will
be because the vast majority of different types of data, that will be used to write
software, will be Complex data types.33 These will be new types of data which have

243Optimising the Results

been made up. That is to say, these will be compounds of two or more basic elements
which computers easily understand (i.e. numbers, words and characters). And these
elements would share some particular relationship. And these will require a set of
software procedures to control access to that data. So that the relationship between
its elements remains the same.

The reason for the prevalence of Complex data types will be because of the
advantage these give to Programmers. This advantage will be the ability to extend a
programming language. They could add more words to the language; words which
capture constructs that have been derived from a problem. That is to say, these words
represent different classes or sets of items they may see recurring, within a problem.
And whenever they want to store or retrieve information about these sets, they could
simply use these new words.

For example, if they were to see a problem within which a list of cars was men-
tioned very often, they could add a new word to represent such a list. Complex data
types would allow them to aggregate software data together, without having to make
up names for each individual piece of information. So they could add a new word to
the programming language, which represents a list of cars. Each list would require
software procedures to add and remove cars from it.

Another example would be if they were to meet a problem within which two or
more items were always associated with each other. They could add a new word to
represent this association. Complex data types would allow them to associate two
or more related pieces of information together. So, for example, they could add a
new word which represents a Database Record. A Database Record could hold the
name of a car, its position in a Game World, its direction, its speed, its engine and
how many doors it has. Each Record would require software procedures to control
access to its Fields.

Any data which may be used to identify a Complex data type would also be
another Complex data type. That data would merely be acting as a substitute for the
other Complex data type. An example of this would be data that holds a Primary
Key for a Record. Each Primary Key would require a software procedure that could
be used to get access to its Record.

No Naming convention will have an adequate scheme for coping with Complex
data types. This will be because there would be too many different types that
Programmers could create, and there would not be enough letters in the alphabet
to identify all of these types. Some people will try to cope with this by combin-
ing more and more letters, in the prefix of the name of each data. But then this
will start to create another new cryptic language. So they will quickly stop mak-
ing distinctions between data, after they have come up with a convention which
identifies the basic elements. That is, they stop making distinctions after they have
come up with a convention which identifies numbers, characters, words, the size of
numbers, the range of numbers and the scope of data. Sometimes they may make
distinctions between locations in computer memory that hold numbers, characters
or words as well, if the programming language allows you to read or write directly
from computer memory.

Nevertheless, since Naming conventions will make little or no distinction between
Complex data types, which are by far the largest categories of data you will come

244 Event-Database Architecture for Computer Games

across in any large project, like making a Computer Game, it will still be possible for
errors to occur in the software. It will still be possible to copy data between incom-
patible types by mistake. It will also be impossible to tell, from the name of the vast
majority of the software data, exactly what type of data each one will be, without
having to refer elsewhere. But once the Programmers, who believed in the myth of
self-documenting data, were to do that, there would be no point in having a Naming
convention. They could give their data a natural name and look up this same refer-
ence if they wanted to know what type each one was.

As for Game Artists, in the Computer Games industry and other staff who believe
in the myth, their faith has not so far extended to include Naming conventions such
as the Hungarian Notation. They have rightfully found it obscure, cryptic, contrived
and unnatural. Nevertheless, they have implicitly believed that it was possible to
adopt a Naming convention which could prevent errors with data in a computer sys-
tem. The tools they have traditionally used have produced computer files with three-
letter suffices (.png,. jpg,. avi,. mpg,. mkv,. fbx,. tiff). And they used these letters to
identify the data the tools read in and wrote out. The Game Artists, for example,
have naturally got into the habit of using these three-letter suffices, even within their
verbal language. And if you were to introduce them to a new system, which did
not use these letters, they would find it obtuse. Even though the new system would
be no more prone to errors than the traditional one that they were confident with.
Even though this traditional system would be based on the same principles as the
Hungarian Notation, which they find so alien.

Other staff, on the other hand, have no such reservations. Closely related to the
faith they have in the Hungarian Notation is the fetish which some Programmers
have for data being type safe.34 That is, software written in a way that every piece of
data has been categorised into a group. And each group has been clearly defined to
the programming tools. So that, when the software was built, these tools could detect
when data was being transferred between two incompatible groups (or data types).
This would suggest that the software was incorrect, as with Naming conventions.
And the tools could then either warn the Programmers or stop building the software.
But, unlike Naming conventions, this would happen automatically, without the need
for the Programmers to read the software and interpret it.

Accompanying this fetish for data being type safe is another fetish they have for
all data being strictly defined within its scope. That is, even within the individual
steps of a software procedure, data should only be defined just prior to the first step
within which it was used. And it should not be defined after the last step. This again
is so that the programming tools could automatically detect when data was being
incorrectly used. If data were being used by parts of the software, or even parts of a
software procedure where it had not been defined, this would suggest the software
was incorrect. This would suggest that either another piece of data should be used,
the step in a software procedure using the undefined data should be omitted or some
previous step which produced the correct data had been omitted. Hence, those who
believe in the myth of self-documenting code and data believe that strict, draconian
adherence to these two techniques not only ensures the correctness of software. But
that data which was type safe, and only used within its scope, can convey the seman-
tics of the software using it as well.

245Optimising the Results

However, this belief stems from a fallacy. Whether data was type safe, or lim-
ited in scope, these techniques would still be properties of the programming tools:
not the Programmers. These could only help these tools with syntactic errors: not
semantic ones. It would still be possible for these techniques to be used erroneously
by someone who misunderstood the semantics of the software.

Consider the previous example. Suppose a Programmer was writing a game
involving racing cars. And the Programmer defined every group of data used by
the software. This included different groups for all the cars belonging to different
manufacturers, different groups for all the cars with different engines, and wheels,
different groups for all the different models and so on. Now suppose, before the race
began, one of the cars had to be chosen from a list of those available for that race to
act as a Safety Car. And this list was composed of data from one of the groups the
Programmer had defined. The Safety Car could be any car, from any manufacturer,
with any engine, any number of wheels and of any model. As long as it could lead the
procession of contenders, around the racing track once and bring them back to their
start positions. And it was unique in that race. That is to say, there was no other car
like the Safety Car in the race.

Since all the data of all the cars were in a clearly defined group, the software
would be type safe. The programming tools would automatically detect any confu-
sion between cars and other items in the Game World. And the Programmer could
easily choose one car at random from the list available for that race to act as a Safety
Car.

But that choice could be wrong and may not be unique. The type safety of the
data of all the cars does not provide any way to identify a unique car. Therefore, the
programming tools that check the type safety of the data cannot detect when a Safety
Car was chosen which was not unique.

There would be no way another Programmer, who did not know why the software
was written, could tell what a Safety Car was, by examining the definition of the
groups of cars. And there would be nothing stopping this second Programmer from
making the same mistakes as the first one who wrote the original code.

Conversely, it is still possible to write software which is correct, containing no
errors, even though it is not type safe. It is also possible to write software which is
correct, containing no errors, even though none of the data has been restricted in its
scope. As long as the Programmers who write this software have the self-discipline
to verify what they write, they can achieve these goals. And they would have no need
for these techniques.

Only if they lacked the self-discipline would data which was type safe, or limited
to its scope, have any bearing on the Quality of software they produce. And even
then the effect would be marginal. It would not save them from themselves. It would
not give them the self-discipline which they lacked. It would only help the program-
ming tools draw their attention to possible errors: not genuine errors. Invariably, the
tools provide mechanisms for ignoring whether data was type safe or being used
within its scope. And once undisciplined Programmers grew tired of the red her-
rings they were being drawn to, they would use this to override the tools.

Like the Hungarian Notation, at best, these two techniques would only indicate
when incorrect data was possibly being used, at a particular point in the software.

246 Event-Database Architecture for Computer Games

These would not identify which data was incorrect. And even after the Programmer
had identified this data, these techniques would not indicate what the correct data
should be. So there would be no way these techniques could possibly convey the
semantics of the software.

For their part, Game Artists, and most of the other staff in the Computer Games
industry, have had no conception of either data being type safe or limited in scope.
They have never had the tools to enforce such concepts. And it is to their credit
that they have been spared the consequences, even though they may be blissfully
unaware of the fact. Otherwise, the self-righteous ones amongst them, who believed
in the myth of self-documenting data, would have crassly enforced their colleagues’
compliance with these techniques. As has been the case amongst Programmers.

In the case of Database Administrators, this has already happened to a limited
extent. Their tools have provided them with techniques comparable to Programmers,
but not in the same form. They have had the ability to strictly define the Fields in a
Database Record. So that each is guaranteed to be either a number, a date, a word, a
name and so on. They have had the ability to restrict the range of these numbers, dates,
and the length of the words or names in each Field. All of which has been comparable
to making data type safe in programming. They have had the ability to restrict the
access of software users to certain Records in a Database. They have had the ability
to restrict who can read, edit or delete each Record. They have also had the ability to
restrict how long a Record lasts in a Database. All of which has been comparable to
limiting the scope of data, in programming. Thus, it should come as no surprise to find
that, amongst Database Administrators, the myth of self-documenting data persists,
just as it does amongst Programmers. And they believe that self-documenting data is
an adequate substitute for documenting a Database in natural language.

3.11  NATURAL LANGUAGE AND PROGRAMMING LANGUAGE

But is the myth of Self-documenting data true? Can you construct your software
data in such a way, in a programming language or in a Relational Database, used by
the Event-Database Architecture, that it prevents errors? And the software produc-
tion process or the Event-Database Production Process does not require natural
language? Which is better at preventing errors? A natural language or a program-
ming language?

Whichever of the two is better at expressing ideas and can reach a larger audience
is better at promoting understanding. Whichever is better at promoting understand-
ing is better at reducing errors due to a lack of understanding. And whichever is
better at reducing errors is better at preventing errors. Let us compare a natural lan-
guage and a programming language with respect to expressing ideas beginning with
references and how you can refer to subjects in both languages.

The need to look up a reference is a common thread throughout the different
stages of the myth of self-documenting code and data. Whenever you look at a fea-
ture on a page of an automated User Manual, you will always need to refer to another
page. This page will provide the context in which that feature should be used, without
which you will not be able to understand it. Whenever you come across a project using
a Naming convention, you will have to refer to some dictionary,35 which describes

247Optimising the Results

what each name means. Whenever you come across the Hungarian Notation, you
will have to refer to some Coding standard36 document, which describes what the
letters, which prefix each name, mean. Or, as you will probably be encountering a
Complex data type, you will have to look up where that data has been defined. So it
will come as no surprise that, when it comes to the foundation of the whole myth, yet
another reference will be required.

The foundation of the myth is the similarity between natural language and pro-
gramming languages. There are High-level languages37 that set out to be like natu-
ral languages (e.g. BASIC, FORTRAN, COBOL and SQL38). But these languages
are conspicuously absent in the Computer Games industry. The very fact that these
languages are so verbose is taken as proof of sluggishness and inadequacy. The lan-
guages used in the industry, by contrast, are characterised by brevity. These lan-
guages are characterised by how little in common they have with natural language.

These programming languages do use a few words from natural language. But
when these are used, the words have only one meaning. Whereas, in natural lan-
guage, these words have several meanings. Also due to the grammatical differences
between programming languages and natural language, some phrases can be mis-
leading or have unintentional implications. You can see these differences if you
were to try to convert every word, and notation, from these programming languages
to natural language. What you end up with would be a pidgin language like the
Program Design Language (or PDL39).

For example, take this simple set of PDL statements:

IF A IS TRUE THEN
B
ELSE
C
ENDIF

In natural language, this could mean one of two things. Either if A is true, do B,
and if that fails, do C. Or it could mean if A is true, always do B, otherwise always do
C. In a programming language, these statements could only mean the latter.

The richness (i.e. double meanings in the words) of natural language allows it to
be used economically to express complex ideas. But it takes far more lines of a pro-
gramming language to express the same set of ideas. So understanding ideas written
with its words and instructions takes more time and involves wading through more
lines than you would with natural language.

Consider this description of a round of golf in natural language:

A round of golf takes place over a course of 18 holes. At each hole, each golfer has to
hit the ball, from a designated area on the course, the Tee, to the hole, which lies in
another area, the Green. Each golfer takes it in turn, to take their shot. And their score
would be determined by how many strokes they used to putt the ball. The lower the
number, the greater their score would be. The golfer with the best accumulative score
in a round, starts each hole. But, after the Tee, the one whose ball was furthest away
from the hole, takes the next shot before the others.

248 Event-Database Architecture for Computer Games

Now although this description looks simple in natural language, it has in fact
got many implicit double meanings. The word ‘take’ for example was used multiple
times, with subtly different meanings.

It was used to describe the relationship between the game and a location in the
Game World;

A round of golf takes place over a course of 18 holes.

It was used as an adjective to describe the mutually exclusive relationship between
golfers;

…Each golfer takes it in turn…

And it was used as a verb to describe the relationship between the golfer and
the ball;

…Each golfer….to take their shot.

In a programming language, you cannot use a single word to describe all three
relationships. And especially in the Computer Games industry, the words of the pro-
gramming language could only be verbs, not adjectives. That is, the words could not
describe the abstract relationships between items in a round of golf. Instead, these
would only describe the sequence of rudimentary actions that occur in a round, for
example

START ROUND
WHILE NOT END OF ROUND
 GO TO NEXT HOLE
 WHILE NOT END OF HOLE
 IF AT THE TEE
 WHILE GOLFERS UNFINISHED
 GET NEXT GOLFER WITH BEST SCORE
 LET GOLFER TAKE SHOT
 IF BALL LANDS IN HOLE
 REMOVE GOLFER FROM UNFINISHED
 ENDIF
 END WHILE
 ELSE
 WHILE GOLFERS UNFINISHED
 GET NEXT GOLFER FURTHEST AWAY
 LET GOLFER TAKE SHOT
 IF BALL LANDS IN HOLE
 REMOVE GOLFER FROM UNFINISHED
 END IF
 END WHILE
 END IF
 END WHILE
END WHILE
END ROUND

249Optimising the Results

Even these lines of PDL statements only give a brief summary of what would be
required in a programming language. More would be required to further explain
some of these statements at a level which a computer could understand. More lines
would be required before it could be practical to use it to build a game. Yet already
the number of lines and the number of distinct components exceed the equivalent
description in natural language.

As another example, consider a game where a car would be moved into a
garage, then onto a driveway, then onto a road. This would use a software module
to manage the car. The module would have a software procedure, which would
allow you to move the car. And this procedure would use data which described
the new location of the car. The names of the module and procedure would be
‘Car’ and ‘Move Into’, respectively. The data for the three locations would be
called ‘Garage’, ‘Driveway’ and ‘Road’. Now in natural language, to move the car,
the instructions would be

move the car into the garage
move the car onto the driveway
move the car onto the road.

But in practice, in the software code, these would read

Car Move Into Garage
Car Move Into Driveway
Car Move Into Road

Firstly, these would all be grammatically wrong. Secondly, by insinuating that
you could move cars into a driveway and a road, you would unintentionally be imply-
ing that these locations could somehow contain a car, in an enclosed space, like a
garage could.

Another difference between programming languages and natural language is that
both of these use the same forms of punctuation and notations but with different
meanings. For example, some programming languages use the same symbols for
mathematical operators like

equals
plus
minus
greater than
less than
you would use in natural language, for example
=
+
−
>
<

250 Event-Database Architecture for Computer Games

But the vast majority of the operators these languages use are unrecognisable:
like those for

multiplication
division
logical OR40

logical AND
e.g.
*41,
/
||
&&.

In mathematics, there is a branch called Basic Set Theory. In this branch, braces
({}) are used to list a set of items, for example

{Peter, Mark, Luke, John}

This represents a set of names. But most programming languages have no sup-
port for Basic Set Theory. So they use braces for other things. For example, to list a
sequence of instructions to be executed, for example

{
Peter(),
Mark(),
Luke(),
John()
}

This represents a sequence of instructions to be executed called ‘Peter’, ‘Mark’,
‘Luke’ and ‘John’, in that order. In Basic Set Theory the order of the names in the
set makes no difference. In programming languages typically used in the Computer
Games industry, the order of the names makes a big difference.

Most programming languages also have no direct provision for using cer-
tain mathematical notations, like the one for a square root. So these languages
use specially named software procedures, with short acronyms instead, for
example

	 ().sqrt

Thus, ultimately, you would have to look up a reference to understand software
documented using programming languages. Experience would only give limited
help to a Programmer. Programming languages were made to be extensible and
flexible for a wide range of problems. Even with a Coding standard, you could not
anticipate how people would perceive a problem. And that primarily determines how
they extend the language. You would need at least one or more secondary references,

251Optimising the Results

apart from the instructions of the programming language they have written, which
explains their perceptions.

Depending on your experience, this reference may be other software modules that
used their software. But if these secondary references also did not have any separate
documentation, these would suffer from the same limitations as reading any piece
of self-documenting code. You may have to refer to a book on programming or the
person who had written the module you were interested in. But how useful would
such references be when limited to so few members of staff? Could a document
or explanation by Programmers, for Programmers, communicate anything but the
rudimentary details of programming?

The same quandary arises in the case of Database Administrators or other staff
who also believe in the myth of self-documenting code and data. It arises amongst
Database Administrators who believe it is possible to choose a set of names for
data, which were self-explanatory. It arises amongst the Game Artists who believe
it is possible to choose a set of names, for the commands of a User Interface, whose
purpose was self-evident. Or annotate items in locations of the Game World that
made them self-explanatory. This is nothing more but another variation of the myth
of self-documenting code.

The set of names they choose for their data, or the commands of a User Interface,
or annotations of items in the Game World, have little meaning without a second ref-
erence. These have no meaning without a reference, which explains the perceptions
of the person who chose those names and the problem which he or she was trying
to address.

In the case of the commands of a User Interface, and annotations of items that
appear in the Game World, this has a direct effect on the User Manual, which would
be based almost entirely on the User Interface, and the appearance of items in the
Game World. After reading this User Manual (i.e. the ‘self-explanatory’ names that
the Artists gave to commands in the User Interface or annotations of items in the
Game World), the users of the software will find themselves lost and confused. Since
the Manual will be minimalistic, full of the assumptions of the Game Artists who
made the User Interface or the Game World. This Manual will be full of Didactic
step-by-step instructions, which the users or players will be expected to follow to the
letter, without variation or innovation.

Any innovations would be limited to two choices. Either the players would be
expected to use some form of Reverse engineering. And by examining the lower
level qualities of the game, the names of the commands of the User Interface, or the
annotations of items in the Game World, the players would be expected to infer the
higher level design. That is the assumptions of the Artists who made up these names
or annotations. Or the players would be expected to seek out some second reference
to understand these assumptions.

Notwithstanding that this requirement, for a second reference, renders the
primary one (i.e. the User Manual) redundant, the players will invariably find
the secondary one also redundant. It will, invariably, lead to the players search-
ing the Internet for articles to explain the Game World. And all they will find
are articles written by someone who holds natural language in contempt. Either
it would be written by a Game Artist for another Artist. Or it would be written

252 Event-Database Architecture for Computer Games

by one very experienced player or ‘hardcore gamer’ for other ‘hardcore gam-
ers’. Could a document by one Artist, for another Artist, convey anything but
the rudimentary details of graphic design? Could a document by one hardcore
gamer for another hardcore gamer convey anything but the rudimentary details
of hardcore gamers?

In a project led by those who believe in the myth of self-documenting code and
data, it would be no use relying on the Programmer who wrote some software mod-
ule, or tool, as the second reference for all other staff involved in the production of
the game, who want to use that module or tool. Nor would it be any use relying on
the Database Administrator who made a Game Database, as a second reference
for all other staff who want to use that Database. Nor would it be any use rely-
ing on a Game Artist who made a User Interface or some item in a location in the
Game World, as a second reference to all the other staff who want to use that User
Interface or item in that location. Since they would all rely on self-documenting code,
data, commands of the User Interface. or annotations of items in the Game World.
But, as already stated, the names of instructions of programming languages, the
names of data, the names of commands of a User Interface and the annotations of
items in the Game World are all very base and weak forms of expression. These
would at best tell you how some of the components of software work. These cannot
convey why, or the context in which, those components should be used. For this, you
would need natural language.

The programming languages used to write games, and the commands of the User
Interface of games, rely on a series of imperative commands. This is just the same
as a commander giving a sequence of orders to the troops. The troops are not meant
to understand the orders. They just follow the orders. Therefore, writing self-docu-
menting code, or creating the commands of a User Interface without documentation,
and expecting others to understand it, would be like giving orders to troops. But
these troops would in fact be either your colleagues doing collaborative work. Or
they would be customers who have paid for the privilege of being condescended to
while playing your game.

Perhaps those who give credence to the myth do indeed believe they are com-
manders, leading troops into war. If so, then they would only be fighting against
themselves. For if ever a programming language or User Interface came into being,
that was anywhere near as expressive as natural language, this would mark their
downfall. This would result in monumental economic and cultural changes. Not only
in academic studies and commercial trade but in almost every part of society. Since
the ability of computers to interpret natural language is one of the major hurdles in
the field of Artificial Intelligence.

Once this hurdle had been surmounted, the decline and fall of Programmers
would swiftly follow. Database Administrators, Game Artists and other staff would
also become redundant shortly afterwards. That is, once this Artificial Intelligence
had been taught how to manage Databases, draw artwork or any other skills required
to make Computer Games. Anyone could communicate directly with a computer
without the need for such professions, especially Programmers. But there is no such
breakthrough in sight in Artificial Intelligence. And the continuing rise in demand
for Programmers shows no sign of abating. These two facts, alone, demonstrate the

253Optimising the Results

sheer scale of the dizzying heights of delusion that the myth of self-documenting
code and data commands.

If you were to rely on the software code, the names of the data the commands of
the User Interface or annotations of items in locations in the Game World as a main
form of documentation, you would not be able to tell when that code, data, command
or annotation had been wrongly written. Since these would be the primary form of
documentation, the way these would be written, and the software would behave,
could not be wrong. Even software which was partly implemented, and left unfin-
ished, could not be touched. Changing the behaviour of the software would be filled
with apprehension because no one would really know what the effects would be. No
one would really know whether it behaved as it did for a reason.

Each change would become a melodrama, in which the plot could take sudden
unexpected twists, as the resultant software suddenly improves or deteriorates.
Without warning emotions amongst the staff would swing from one extreme, vio-
lently, to another: one moment in ecstasy, the next in despair. And all manner of
heated arguments over the software, with copious amounts of hand waving, would
take place. Inevitably, this would end with accusations, up to and including slander,
being exchanged between members of staff.

A separate reference solves all of these problems. A software design and other
documentation, written in natural language, would give you the confidence to make
changes to the software code, data or its User Interface. But, more importantly, it
would allow you to reach beyond the narrow confines of those who believe in the
myth of self-documenting code. and data. It would allow you to reach all the mem-
bers of staff and all the players in your Game World.

So it would be paramount that any process for producing software, which would
rely on communication, should not rely on the myth of self-documenting code
and data. It would be important that the Host Modules, of an Event-Database
Architecture, should also not rely on self-documenting code or data. Any Game
Database constructed for a game should also not rely on self-documenting data.
And neither should the User Interface of the game or items in the Game World be
assumed to be self-explanatory.

NOTES
	 1.	 Database design sources. Handbook of Relational Database Design by Candace C.

Fleming and Barbara Von Halle.
	 2.	 Finite State Machine. A method for designing a computer system based on two basic

concepts: that the system has a well-defined set of states and that there exists a well-de-
fined set of events connecting any two states.

	 3.	 Desktop computer. An International Business Machines (IBM) personal computer
(PC) or compatible model. It was designed for business but is now popular as a Home
computer too.

	 4.	 Scalable. A software which can vary its performance depending on the resources it has
available. And, thus, it can be used on a range of computers, with different speeds, sizes
of memory and other levels of resources. Scalable components. A software procedure
or data that can vary the time and space that it uses. See Glossary.

	 5.	 Home computer. A computer system designed for home use, e.g. playing games, music,
learning or small business software.

254 Event-Database Architecture for Computer Games

	 6.	 Games industry commentators. Some Software Developers keep an up-to-date ver-
sion of their computer games on Desktop computers, even though they never release
this version. See Glossary.

	 7.	 Small devices (with Relational Databases). Relational Databases have been used with
software deployed on mobile phones. See Glossary.

	 8.	 Ordered software system. A system of software components that has been assembled
according to some principles. And therefore can be progressively disassembled, using
the same principles, without causing errors when the software is rebuilt. See Glossary.

	 9.	 So...there are no obvious deficiencies. Quotation by C. A. R. Hoare, a computer scien-
tist best known for his discovery of a widely used procedure for quickly sorting items
of data. He later became a Professor of Computing at Oxford University, in the UK.

	 10.	 Forward engineering. The process of building a software product (or any manufac-
tured product) in four phases: analysis, design, implementation and testing.

	 11.	 Reverse engineering. The process of rebuilding a software product (or any manufac-
tured product) in four phases: re-testing, re-implementation, re-design and re-analysis.

	 12.	 Software engineering. A systematic, disciplined approach to software production. It
was devised to cope with large projects which no one individual could undertake to
deliver in a timely, secure fashion. See Glossary.

	 13.	 High turnover of staff. Very few of the staff of the Software Developers, in the Com-
puter Games industry, stay there or in the industry as a whole, for more than a few
years. See Glossary.

	 14.	 Design principles. A pre-emptive statement at the beginning of a design document that
sets the rules for providing a solution to a problem. See Glossary.

	 15.	 Design patterns. A general description of a solution to a common design problem.
In software production, design patterns usually refer to solutions which have been
built using particular programming languages. Namely, those that support a technique
known as ‘Object-Oriented Design’. See Glossary.

	 16.	 Heuristics. A set of rules, based on educated guesses, that limits the search for solu-
tions. These are intended to increase the probability of solving a problem, which is not
well understood. See Glossary.

	 17.	 Benchmark. A test to measure the performance of computer software, hardware or
components. These are used to compare the relative performance of competing prod-
ucts. See Glossary.

	 18.	 Time complexity (of an algorithm). This relates to how much longer it takes an algo-
rithm to solve a problem as the size of that problem increases. That is to say, how much
longer would it take a theoretical software procedure to perform its task when the size
of that task increases? See Glossary.

	 19.	 Hack. A quick job that produces what is needed but not well.
	 20.	 Hacker. Someone who works by using Hacks. A Programmer who writes software

not by planning, but by misusing the design of software, software tools, programming
languages, computer hardware and different techniques to achieve a quick result. See
Glossary.

	 21.	 Obsession with efficiency. In a software project, not only the engineers involved may
become obsessed with efficiency. Other staff may become obsessed too. See Glossary.

	 22.	 Place-holder. A software procedure or software module, which acts as a substitute for
a feature which has yet to be designed. That is to say, it has no clear requirements to
meet. It either does nothing or only partially implements the feature.

	 23.	 Bugs, Hacks and Place-holders. External and internal software errors. See the
subchapter entitled Division And Consistency.

	 24.	 Haste makes waste! From John Ray’s 1678 proverb collection.
	 25.	 Naming convention. A written convention for naming software data, procedures and

modules. The names should give helpful information about the use of each, in order to
avoid errors.

	 26.	 Hungarian Notation. A Naming convention that was invented by Charles Simonyi, a
Hungarian, while at the Microsoft Corporation. See Glossary.

255Optimising the Results

	 27.	 Scope (of data). The limited block (i.e. software procedure or module) where software
data may be used. This helps protect the data from erroneous changes, allows reuse of
the same name for the data, in other blocks, and simplifies each block by limiting the
data to that block.

	 28.	 Comments. Text embedded in software code, ignored by the computer, which is merely
there to help explain the use and function of software data, procedures and modules.
See Glossary.

	 29.	 DOXYGEN. A software tool used to generate documentation for software from the set
of computer files used to build its software modules. See Glossary.

	 30.	 HTML. Hypertext Markup Language. A programming language for describing docu-
ments displayed on the World Wide Web.

	 31.	 First programming language. The first programming language that allowed you to
name data was Formula Translation (FORTRAN), created by the International Busi-
ness Machines Corporation (IBM) in 1957.

	 32.	 Software industry commentators. Accompanying many tools which have been intro-
duced into the Software industry, those who have made this introduction have stressed
the importance of keeping the components of a computer system as independent as
possible. See Glossary.

	 33.	 Complex data types. The translation of simple constructs (i.e. nouns), in a natural lan-
guage, into complex constructs (i.e. software modules), in a programming language.

	 34.	 Type safe (of data). In theory, software which is type safe has sets of data which have
been so well defined that it is possible for the tools, which use that data to build soft-
ware, to automatically recognise erroneous steps within it. Hence, it is impossible for
the software to be incorrect.

	 35.	 Dictionary (of names). A list of definitions of the names of software data, procedures
and modules used in a project. In practice, there will not be a single list. The definitions
will be spread throughout the software code. You may need to ask the Programmers
involved, what each data or procedure name means.

	 36.	 Coding standard. A document used in software companies. It outlines the Naming
convention, and other guidelines, to follow in order to produce software of a consistent,
maintainable standard.

	 37.	 High-level language. A programming language which tries to use natural language
words and grammar in order to be easy to understand and use.

	 38.	 BASIC, FORTRAN, COBOL, SQL. Beginners All-purpose Symbolic Instruction
Code, Formula Translation, Common Business Oriented Language, Structured Query
Language.

	 39.	 PDL. Program Design Language. A language for producing structured software
designs, created by Caine, Faber and Gordon Inc.

	 40.	 OR, AND. These are logic operators used in programming languages to test when
either one of two conditions (A or B) has become true. These are also used to test when
both (A and B) have become true.

	 41.	 *, /, ||, &&, sqrt(). These are all mathematical notations, software procedures and logic
operators used in the programming language ‘C’.

256 DOI: 10.1201/9781003502807-4

4 The Nature of the Beast

As previously mentioned, when a software production process, including the Event-
Database Production Process, is led by those who view software production as an
art, and rely on Reverse engineering, there will be a recession. A recession away from
higher-level tools (including natural language) to lower-level tools which Reverse
engineering depends on. And with the receding of natural language, just as in the
Software Evolution Process, just as in the Tower of Babel, comes chaos.

Within this chaos, the sudden moments of clarity, and burst of high productiv-
ity, which they achieve through Reverse engineering, will look impressive to almost
everyone. And this impression will secure their objective. That is to say, they will
acquire an unnatural leadership, because of their impressive productivity, which they
could otherwise never aspire to. As a result, they will be promoted in a hierarchy,
above their peers.

In contrast, when the Event-Database Production Process is led by those who
view software production as a science and rely on Forward engineering, there is a
promotion of higher-level tools. The highest-level tool is natural language. And with
the promotion of this tool, there is a promotion of dialectic communication amongst
the staff. That is to say logical arguments from different points of view to reach the
truth about some subject. This normally takes the form of a dialogue. And with this
dialogue, there is a promotion of the productivity of all the staff. And with that, those
who promoted the higher-level tools acquire a natural leadership. And they too will
be promoted in a hierarchy above their peers as a result.

But notice the two different ways these promotions occur and how these hierarchies
form. In the first case, the hierarchy forms because no one else but a small band of peo-
ple have a superior knowledge of a project. And therefore this band is more productive
than anyone else. And they are promoted as a result. In the second case, the hierarchy
forms because another band of people promote dialectic communication amongst the
staff. And therefore all the staff exhibit the same level of knowledge of the project. At
least to the point that you cannot distinguish the superiority of the knowledge of one
band over another. And as a result, they are all equally as productive. And the band of
people who promote this dialect communication are promoted as a result.

In the Computer Games industry the former hierarchy is the most common
form. And this is the hierarchy that the Event-Database Production Process will
probably be employed. Lead by the Game Producers, Game Programmers, Game
Designers, and sometimes ‘technical’ Game Artists who form the small band of
people who exhibit superior knowledge. Often this band will have a preliminary
meeting amongst themselves prior to any general or wider meeting of the rest of
the staff. They discuss the subject in the general meeting amongst themselves using
their superior knowledge and present a united front in that general meeting. And you
would be forgiven for thinking that because they exhibit this superior knowledge in
a project that therefore their leadership is a natural leadership.

https://doi.org/10.1201/9781003502807-4

257The Nature of the Beast

But as has already been explained, the truth is very different. It is a symptom of
an unnatural leadership that the leadership obfuscates the truth. And this obfusca-
tion makes it hard to judge the success or failure of any software production process
it uses, including the Event-Database Production Process or a Software Evolution
Process. And whether this success or failure was due to a natural leadership.

So you need to understand how to recognize the symptoms of a natural leader-
ship and unnatural leadership. In order to judge the success or failure of the Event-
Database Production Process or a Software Evolution Process.

One symptom of natural leadership that distinguishes it from unnatural leader-
ship has already been mentioned. That is in a natural leadership there is no band or
group of people with superior knowledge. At least to the point where you can detect
the knowledge of one group as being superior to another. In an unnatural leader-
ship, there is a distinct gap in knowledge, between those who conduct the unnatu-
ral leadership and those outside of that band. This means, in the Event-Database
Production Process, in a natural leadership all the staff will have the same knowl-
edge of the process and the constructs of its language i.e. Events, Actions, Game
Objects, Database Tables, Database Records and Database Fields. In an unnatural
leadership, only a small band of the staff will have a superior knowledge of the pro-
cess and the language.

Therefore, if you give all the staff an Event-Database Architecture Knowledge
Test,1 a multiple choice test. Where each question asks them to select the mean-
ing of the names of different Events, Actions, Game Objects, Database Tables,
Database Records and Database Fields. And each answer is one of a list of mul-
tiple options they have to choose from. And the correct answer is the one that
matches the description of that item in the data design. Then the score for all the
staff should be evenly distributed in a natural leadership. This is evidence that the
Event-Database Production Process has succeeded. In an unnatural leadership,
the distribution of the score will be a Normal distribution, with a narrow band that
obtained a very high score. This is evidence that the Event-Database Production
Process has failed.

Another symptom of natural leadership that distinguishes it from an unnatural
leadership is that natural leadership produces a functional hierarchy. And an unnatu-
ral leadership produces a dysfunctional hierarchy.

A functional hierarchy depends on the leaders of the hierarchy. It depends on the
ability of the leaders to promote higher-level tools. As has already been said, the
highest-level tool is natural language. The success or failure of the hierarchy depends
ultimately on the abilities of the leaders at the top of the hierarchy, to promote natu-
ral language and dialectic communication amongst the staff.

A dysfunctional hierarchy depends on the followers of the hierarchy. It depends on
their ability to follow didactic communication. In the form of art, literature, design or
meetings which were meant to be instructive. The success or failure of the hierarchy
ultimately depends on the abilities of the followers at the bottom of the hierarchy. To
follow the instructions in the art, literature, design or meetings. Organised by a small
band of people with superior knowledge who are called ‘leaders’. But crucially these are
unnatural leaders. And the followers are unaware or denied the privileges of their role.
That is they are ultimately responsible for the success or failure of the hierarchy.

258 Event-Database Architecture for Computer Games

Therefore, if you organise a meeting of all the staff to discuss a new game design,
or some changes to an existing game design, and take minutes of the meeting. And
if you were to ask all the staff to give their logical arguments for or against the new
game design, or for or against a change to the game design. Then the minutes of the
meeting should show all of the logical arguments of all the staff, under a natural
leadership in a functional hierarchy. This would be evidence of the success of the
Event-Database Production Process. In an unnatural leadership, that is to say in a
dysfunctional hierarchy, not all of the arguments will be in the minutes. And some of
the staff cannot or will not make an argument. Or the arguments will not be logical.
Or their arguments will be interrupted by other staff who have superior knowledge.
This would be evidence of the failure of the Event-Database Production Process.

Another symptom of a natural leadership or functional hierarchy that distin-
guishes it from an unnatural leadership or dysfunctional hierarchy is the nature of its
leadership. If it were a functional hierarchy, this leadership would be based on a cult
of personality. If it were a dysfunctional hierarchy, this leadership would be based
on a vicarious leadership.

A natural leader or a cult of personality leads by example. The leader demon-
strates, by personal example, how a piece of work should be done, how the follow-
ers should behave towards each other or how the followers should treat a client.
The followers look, listen and learn from the demonstration and act accordingly.
As has already been mentioned, those who view software production as a science
who become natural leaders in the Event-Database Production Process, promote
higher-level tools. This includes natural language which is the highest-level tool, in
the art, literature and designs they produce through Forward engineering. And the
followers likewise follow suit and adopt that natural language to communicate with
each other.

In this way, the natural leadership or cult of personality serves the followers. They
endear themselves to the followers. This endearment creates a cult of popularity
amongst the followers. That is to say, it creates a following based on mutual trust and
respect for the natural leadership that allows the hierarchy to function.

In contrast, in a dysfunctional hierarchy, the leader does not lead by personal
example, but vicariously: through the example of others. The leader does not rely
on personal demonstrations but on the demonstration of others. As has already been
mentioned, those who view software production as an art, and become unnatural
leaders in the Event-Database Production Process or Software Evolution Process,
promote lower-level tools. And the use of these lower-level tools for Reverse engi-
neering, to understand other people’s demonstrations.

These demonstrations may come from the education of the followers. Or these
may come from the past experiences the followers have had in their careers. Or these
may come from the followers’ peers. Or these may come from other competing prod-
ucts. Whatever the sources of these demonstrations are, the leader assumes, from
these other sources, that the followers implicitly know how a piece of work should
be done, or how the followers should behave towards each other, or how the followers
should treat a client.

Since unnatural leadership or vicarious leadership does not perform demonstra-
tions for the followers, the leader does not depend on an open relationship with

259The Nature of the Beast

them. Instead, the leader need only provide minimal information to complete a task,
to prompt the followers to act. The leader relies on the followers making assump-
tions based on other people’s demonstrations to know how to complete that task.
Furthermore, since the leader assumes that the followers implicitly acquire the
knowledge to perform the work, from these demonstrations, the leader has no need
to engage in a dialogue. The leader needs only provide the follower with a mono-
logue of expectations. Even if the leader wanted to, he or she simply could not engage
in a dialogue. The reliance on the demonstrations and understanding of other people
make this impractical for the leader.

Therefore, if you were to take a task which has already been completed in a func-
tional hierarchy, and give that task to the leadership, and ask them to repeat that task,
then they will produce the exact same result as before. This will be evidence that the
Event-Database Production Process has succeeded.

But if you were to take a task which has been completed in a dysfunctional hier-
archy, and give that task to the leadership, and ask them to repeat that task, then they
will not produce the same results as before. They will produce different results. This
will be evidence that the Event-Database Production Process has failed.

Aside from the cult of personality or popularity of the leadership, there are
other virtues of natural leadership that distinguish them apart from an unnatural
leadership.

In a functional hierarchy, a cult of personality or popularity of a natural leader-
ship has at least eight virtues. Beginning with the one that gives leadership popular-
ity, the leader has

1.	an extraordinary reputation
2.	persuasion
3.	charm
4.	courage
5.	a sense of honour or integrity
6.	a vision
7.	a good memory2

8.	a strength of character

The last of those qualities, a strength of character, is the most important. It is the
basis for all the other virtues.

In a dysfunctional hierarchy, a vicarious leadership lacks a strength of character.
And as a result, all of the other virtues are replaced by substitutes. The leader has

1.	an exaggerated reputation
2.	a dependency on coercion
3.	a schizophrenic personality
4.	an aversion to risks
5.	cynicism
6.	a permanent state of emergency
7.	a short-term memory
8.	a weakness of character

260 Event-Database Architecture for Computer Games

In a functional hierarchy, the leader has an extraordinary reputation, which comes
from an association with some extraordinary achievement. This is not a reputation
that has been acquired prior to joining the company or hierarchy, in another company
or hierarchy. This reputation cannot be acquired from working in another company
that released a highly commercially successful or popular game. But a reputation
that has been acquired within the same company as the rest of the staff on the proj-
ect. So it cannot be a recent appointee or convert so to speak, or someone the staff
does not know personally. But someone whom the staff have got to know over time.
Someone who has shared in their successes and failures. And their achievement is
widely recognised as extraordinary within the staff.

For example, in the context of the Event-Database Production Process, this
achievement could be promoting higher-level tools, especially the highest-level tool
i.e. natural language. And helping all the staff in the project achieve the same level
of knowledge.

In a dysfunctional hierarchy, the leader has an exaggerated reputation. Lacking
the strength of character to achieve anything extraordinary, the leader will manufac-
ture accomplishments. Rudimentary accomplishments will be conflated with excep-
tional ones.

For example, when errors appear in the Event-Database Production Process,
say with the first step the Feasibility Study, the leader will conflate any records kept,
or investigations carried out, that reveal these errors, with good leadership. In the
first step, a minimal game, based on the Event-Database Architecture, is meant
to be built for the target platform. And that game is then tested with respect to the
minimal features of the Architecture. However, suppose after the game was built
and tested, nothing was being rendered on the screen. And after an investigation by
the leader, or more likely someone delegated with that task, it was revealed that there
was an error starting the Graphics Host. The leader will conflate this with good
leadership and avoiding problems in the future in the project. They will make a big
show of this result, and present this in a meeting with the staff, or the client they were
working for, as some kind of extraordinary accomplishment.

However, this is rudimentary. The whole purpose of the Feasibility Study is to
uncover such rudimentary problems. The leader did not design the Feasibility Study.
It was designed and written down by someone else. And it was implemented by other
staff. The leader will not be helping anyone but him or herself by carrying out these
checks. Through these checks, the leader will be able to assess the quality of the
leadership’s decisions. Through these checks, the leader will avoid repeating mis-
takes in the future that will make him or her hate the job. Therefore, no one should
be grateful to the leader for not covering up the mistakes of the leadership. And the
leader will deserve no credit when any records, or investigations, reveal the leader’s
negligence.

In a functional hierarchy, natural leadership has the power of persuasion by dia-
lectic communication. That is to say, the leader frequently engages in logical argu-
ments from different points of view about a subject in order to reach the truth. The
dialogues that the leader habitually engages in help the leader acquire the ability to
make very persuasive logical arguments through natural language. For this is the
way in which those who view software production as a science, and rely on Forward

261The Nature of the Beast

engineering, begin the process. With a dialectic dialogue which is written down in
the design documents. And this is the way the leader resolves conflicts that would
arise during the Event-Database Production Process.

Therefore, if you were to give the leader a subject from the Event-Database
Production Process, the leader should be able to present logical arguments for that
subject from at least two different points of view. This subject could be an Event,
Action, Game Object, Database Table, Database Record or Database Field that
the leader had any awareness of.

For example, suppose the leadership took part in an Event-Database Production
Process to build the game LPmud. And you were to ask what is the reason for a
single Game Object called the Master Object. The leader would explain that this
was necessary because you needed one Game Object that would respond to the
Primary Initial Reset Event of the Event-Database Architecture. And would use
that to control the Loading of all other Game Objects. And you also needed one
Game Object to generate the Primary Heartbeat Event for other Game Objects to
periodically respond to perform some Action e.g. damaging characters in one round
of combat or recovering the health of a character who was resting from combat.
And you needed one Game Object to monitor when all other Game Objects were
Loaded or Unloaded from computer memory. And send the Primary and Secondary
Object Loaded Event and Primary and Secondary Object Unloaded Event to the
Objects that were Loaded or Unloaded from memory.

The leader would also present arguments against the Master Object. The leader
would argue that the Master Object plays too many roles in the Event-Database
Architecture. All of the Game Objects in the Architecture were meant to be gen-
erated from one simple rule. And perform a small part of the overall flow of the
game. Thus making each Game Object simple. But the Master Object seems like
an exception to the rule. It responds to two Primary Events: Initial Reset Event
and the Heartbeat Event. And it sends multiple Primary and Secondary Events:
Heartbeat Event, Object Periodic Reset Event, Object Loaded Event and Object
Unloaded Event. Therefore, the Master Object should either be removed and the
game somehow be constructed without it. Or it should be replaced by multiple sim-
pler Game Objects, each playing one of its multiple roles.

However, an unnatural leadership will not be able to present logical arguments
from two or more different points of view on the same subject.

In a dysfunctional hierarchy, the unnatural leadership lacks the power of persua-
sion. The leadership views software production as an art and relies on Reverse engi-
neering not Forward engineering. And that in turn means the leadership relies on
the didactic. That is to say, the leadership relies on art, literature, design or meetings
which are meant to be instructive. And the ability of the rest of the staff to follow
instructions. So the leader will not be used to making persuasive logical arguments
about a subject. Instead, the leader will adopt coercion when questioned by the staff.

The more subtle form of this coercion manifests itself through a long, reoccur-
ring, never-ending state of emergency. That would be declared in order to get the rest
of the staff to sacrifice themselves and do overtime to meet some milestone. And
the more harsh form would manifest itself through a bullish, hard-nosed behaviour.
More precisely, the leader will cycle between three phases.

262 Event-Database Architecture for Computer Games

In the first phase, the leader will make a genuine attempt to present a desperate
situation, which requires the followers’ help. This attempt will include the leader’s
emotions and some of the details of the situation; namely, those parts which seem to
justify the leader’s anxieties.

For example, suppose there was an impending milestone to deliver some slice of a
game about Skateboarding to the Game Publishers or financial backers by Monday.
On Friday morning, the leader will announce that the company has committed to
showing a slice of the game to the client on Monday. This game takes place in a city
where the player can join gangs of skateboarders by performing impressive tricks
and earning credit. The slice of the game that was meant to be delivered to the client
was just meant to show the player moving around one of the suburbs of the city, and
performing tricks in the local skateboard parks, and along the pavements along the
bungalows that line the streets of the suburb.

But unfortunately, the leader does not believe that this will be delivered on time
to the client. To the standard that they will make a good impression on the client.
The leader will list the secondary characters that inhabit the Game World that were
missing or incomplete, the bungalows that were missing, the different animations of
the player performing the tricks on the skateboard that were missing, the parks that
were missing and so on. The leader will kindly ask for some people to volunteer to
work over the weekend, for a few hours, to ensure that the quality of the game meets
the required standard.

This will leave a strong and lasting impression on some of the followers. For the
very first impression they will have, of the leader, will be that of a hapless, wounded
and vulnerable figure. From that time on, they will find it hard to shake off the image
of someone caught between the crossfire of the demands of the followers and the
demands of any superiors or clients. They will agree to come in on the weekend for
a few hours to ensure that the game achieves a high quality to impress the clients.

However, come Monday, there will be no announcement of the reception of the
game by the client. Some of the staff will make inquiries about it in the afternoon
and find out that the meeting has been postponed till Wednesday. So it turns out that
the staff have slightly more time to polish the game and raise it to a higher quality
than they thought. Eventually, come Wednesday the news will eventually slowly slip
out that the client has seen the latest slice of the game. They are happy with it. And
they have given the go ahead for the next milestone. Everyone will breathe a sigh of
relief and wonder how perilously close the game was to failing that milestone. The
answer to that question will be unclear.

Nevertheless, after several successful attempts with this form of coercion, the
leader will grow confident enough to move on to the next phase.

In this second phase, the leader will only make melodramatic attempts to present
a desperate situation. These will only include the leader’s emotions but none of the
details of the situation.

For example, in the next milestone, the game should show more of the Game
World. The opportunities and areas in which the player can skateboard should grow
and include a more built up inner city area, with lots of grimy polluted streets with
congested traffic. The player will be running through office spaces and run-down
residential estates with lots of high-rise blocks, fenced-off apartment blocks with

263The Nature of the Beast

swimming pools, broken down cars, heavy goods vehicles, police cars, public buses
and smashed windows. Again there will be lots of opportunities for the players to
try out their skills at skating, between the cars in traffic, along the congested public
pavements with lots of pedestrians, in fenced-off public playgrounds or public parks,
next to the residential estates. And in this urban landscape, there will be many edges,
along the pavements, railings, walls, and fences along the streets, around the apart-
ment blocks, swimming pools, parks, and playgrounds, that the player can hop on
with the skateboard and grind along.

Again on Friday morning before the deadline for the next milestone, the leader-
ship will announce that another deadline is approaching on Monday. And that they
were anxious and concerned about it. And that this was really important. The leader
will ask for the names of those who would not be available to work over the weekend
to make sure that their work for the next slice of the game was completed by the
deadline. This time around, there will be an expectation for staff to agree to come
in over the weekend and to explain why they will not be coming over the weekend
if they cannot make it. At the same time, there will be no sense of how many build-
ing blocks that were missing, how many vehicles that were missing and how many
pedestrians were missing. There will be no sense of how many animations of the
pedestrians walking or the player grinding along various edges in the urban land-
scape that were missing.

Again, come Monday, the staff will find that there will be no announcement of
the results of the meeting with the client. Those who inquire will find out that the
meeting again has been postponed to later on during the week. Giving the staff more
time to polish the ‘deliverable’ before it is shown to the client. And come that day
during the week, news will slowly slip out that the game was well received by the
client. Again everyone will breathe a sigh of relief and wonder how perilously close
the game was to failing that milestone. Again, the answer to that question will be
unclear.

However, when the leader becomes overconfident, he or she will move on to the
third and final phase.

In this phase, the leader will make no attempt to even pretend to persuade the
followers. He or she will simply present a list of features of the game design that the
staff were expected to deliver for the next milestone. A minority of these features
will come from requests made by the client. But the majority of these features will
be ad hoc, impromptu suggestions which the leadership added. To practice the art
of the software production. To show off their creativity in that art to the client. To
market the game to the client.

But to the staff all of these expectations on the list of features will be presented
as demands of the client. The followers will be given no explanation of how these
features fit into the overall vision of the final game design. Or how these fit into the
overall plan for the production process that the leadership has to deliver the game to
the client. For this would give away that the majority of the expectations were from
the leader and not the client. The best that the staff will get will be a list of dates for
upcoming milestones and a vague idea of the next expectations of the leadership at
these dates.

264 Event-Database Architecture for Computer Games

Occasionally, one of the followers may question these expectations, either explic-
itly by asking for more details about the phases of the production process in between
these dates. Or implicitly by refusing to do overtime or work over the weekend to
reach the next milestone. At which point, the leader may respond by finding com-
mon errors or mistakes in that follower’s work. Of which there will be plenty, espe-
cially in a Software Evolution Process. Due to the impromptu nature with which the
changes are made to the game design, which in turn comes from the view of software
production as an art. And the leadership may use these errors or mistakes to make
false accusations of negligence. And follow that up with an explicit threat to either
discipline or dismiss that follower.

Unfortunately for the leader, this phase will periodically backfire. Either some of
the followers may refuse to cooperate because of this harsh discipline to themselves
or to other staff. Or they may rush their work producing more errors or mistakes in
the process. Or they may become too tired from doing overtime which results in
them producing more errors or mistakes. And this will cause the leader to revert
back to the first phase.

In a functional hierarchy, a natural leadership has the charm that does not require
these dramatic changes of persona. This charm comes from the way in which the
leader persuades the followers by engaging them in logical arguments from different
points of view. From the way in which the leader eloquently makes their arguments
using natural language and engages them as friends, with the same level of knowl-
edge. Friendship is only possible amongst equals.

In a dysfunctional hierarchy, this is just not possible. The unnatural leadership has
a superior level of knowledge to the rest of the staff, which is the means by which
they acquire leadership. Therefore, they do not and cannot treat the rest of the staff
as equals. And lacking the charm of natural leadership to persuade through logical
arguments from different points of view, the leader will adopt a schizophrenic per-
sonality instead.

The first part of this personality will be evident in the first of the three phases
of coercion discussed earlier. That is to say, the leader will present the image of a
wounded, vulnerable character. The second part of this personality will be evident
in the last of the three phases of coercion. That is to say the leader will present
the image of an intimidating, strong and macho disciplinarian. But the leader will
quickly drop that persona, for the first one, whenever the leadership realises that the
followers are in danger of being alienated.

In a functioning hierarchy, as has already been said, natural leadership leads by
example. Before any task is given to any of the followers, the leadership partially
performs that task. And this example acts as the basis for the followers to imitate and
complete that task. Therefore, if there were any new problems in a software produc-
tion process, such as the Event-Database Production Process, the leader would
naturally be the first one to face it. And the leader would get into the habit of being
the first to face any problem. The leader gets into the habit of assessing the risks of
his or her own decisions to perform some task. And this assessment comes from
partially performing the beginning of that task. This would develop the maturity of
the leader.

265The Nature of the Beast

That is to say this would develop the courage to make decisions and face the risks
of those decisions on their own. This would also help prevent the leader from being
vulnerable to flattery by those who exaggerate or underestimate the risks for one
reason or another.

Furthermore, the courage to act alone would become useful when the leader, by
virtue of his or her position, first encounters a problem. Although the followers may
subsequently help the leader, there still would be an initial period when the leader
stands alone with the problem. If the leader had the courage to act alone, then he or
she would remain calm and not make rash decisions.

For example, in the context of the Event-Database Production Process, in a
functional hierarchy it would make sense for the natural leadership to conduct the
first step of the process, the Feasibility Study, on its own. To encourage that leader-
ship to assess, in that study, the risks of the decision to develop a minimal game or
small cross-section of the final game, based on the Event-Database Architecture,
on some target platform. And to get that leadership into the habit of facing problems
on their own and into the habit of using their courage.

But one of the main features of the Event-Database Architecture is how it pro-
motes communication amongst the staff using natural language. And therefore you
could argue it would be counter-productive to only have a small band or a single
person conducting the leadership on its own. You would not be able to assess in that
case the communication amongst the staff when using the Architecture. So a better
way would be for the natural leadership to begin the feasibility study but let the rest
of the staff join in to complete the study together. And at the end, you will be able
to assess the efficacy of the Architecture to facilitate communication in natural
language. As well as whether the game produced passes the standard minimal test of
the Architecture on all the target platforms.

By contrast, in a dysfunctional hierarchy, the unnatural leadership does not lead
by its own example, as has already been explained. Instead, it leads vicariously, by
the example of others. Therefore, instead of making decisions and facing the risks
of those decisions, the leader will make decisions and let the followers face the risks
of those decisions. This will be presented as an opportunity for the followers to be
more proactive, to anticipate and steer the future direction of a project. The leader
will nominally let the followers make strategic decisions but without the authority to
see these through. The followers will also lack the vantage point to see the long-term
effects of these decisions, on the overall plan for the production process.

The leader will retain the authority, the vantage point and the financial reward,
which were meant to complement the ability to make these strategic decisions. The
leader will limit his or her role to mere delegation of responsibility and enforcement.
Like a foreman in charge of hired hands, doing unskilled work. Like a slave driver,
on a cotton plantation.

For example, in the context of the Event-Database Production Process, the
leader will not conduct the first step, that is to say, the feasibility study. That is to say
the construction of a small minimal game or cross-section of the final game, based
on the Event-Database Architecture on the target platform. And assess whether
it will be possible the build the larger final redundant game, given the time and
resources available to do it. The leader will delegate responsibility for this to the rest

266 Event-Database Architecture for Computer Games

of the staff or a small band amongst the staff. They will face the problem on their
own. They will conduct the feasibility study and come up with a plan to build the
rest of the game and schedule for this plan. This plan will include all the tools and
staff required to build the data, (i.e. artwork, animations, models, sounds, and music
etc.) in the tools design. And this will include all the data that will be required in the
Game Database, in the data design.

However, the leader will call a meeting to discuss the feasibility study and its
results. And in that meeting, the leader will unilaterally, revise the plan and cut
the schedule, if some aspect turns out to be unappealing. There may be a proviso
to the plan, or a time limit to the schedule, which the leader may or may not know
beforehand. It may be that the game has to run on two or three computer hardware
instead of one. Because the clients wanted to reach new lucrative markets of some
new computer hardware or game consoles. It may be that the schedule has to be
cut down from 18 to 6 months. Because the client needs to show a near-complete
demonstration of the game at some Video Games conference in the coming sum-
mer or autumn.

But instead of being honest about this, the leader would either keep this informa-
tion secret, only to reveal it at the last moment in the meeting. Or when it was not
practical to do so, the leader would pretend that the revision was providing a service
to those who conducted the feasibility study. Either they will be expected to believe
that the revision was a multilateral agreement. To help them perform their job bet-
ter. Or the leader will pretend he or she originated the revision. And the followers
will be expected to believe that the real reason for the revision was incidental. It
just happened that the leader decided to release the game on a next-generation game
console and cut down the schedule from 18 to 6 months to make the game available
for demonstration at a Video Games conference in the summer. And the staff that
conducted the feasibility study and came up with the original schedule to deliver the
whole game in 18 months ended up having to face the risks of the decision to deliver
the whole game in 6 months.

When it gets towards the end of the schedule and the game is in danger of miss-
ing that final milestone, the cuts made by the leader will be forgotten. It is not the
leader who cut the schedule will be held accountable. Since the leader lacks the
courage to face the risks of that decision. It would be the staff who came up with
the original schedule. They would face the risks of that decision. They would be the
ones expected to give up their free time and weekends and do overtime to ensure a
successful outcome.

Revision is not the correct term to describe what will take place. It will be more
like amateur dramatics. A real revision would require the leader investigating the
original problem and personally conduct a second feasibility study. It would be irre-
sponsible to rely on just looking at the schedule produced from the initial feasibility
study. The schedule produced may have been over-optimistic.

If the schedule were accurate, then the honourable way to revise it would be to
reduce how much needed to be done, by how much time of the schedule was reduced.
This would be how the natural leadership in a functional hierarchy would deal with
the schedule. Produced from a feasibility study of a small version or cross-section of
a game based on the Event-Database Architecture.

267The Nature of the Beast

The sense of honour or integrity of the natural leadership would not suffer it to be
unrealistic in its expectations. To expect the same amount of work to be done in less
time would be inviting failure. Putting the leadership in a position where they could
break any promises they made to deliver a project on time.

So it would either cut the schedule. And thus cut how much needed to be done.
And hence cut the number of features there would be in the final game. Or the natu-
ral leadership conducts a second feasibility study and extracts a second hopefully
shorter schedule from that. Or the leader would stick to the results of the first feasi-
bility study. And follow the long-term plans in the schedule to complete the product
from that study. Having made everyone aware that the prognosis suggests the game
will be delivered past the deadline. Being sustained by the strength of character to
see this long-term plan through and face the consequences.

But in a dysfunctional hierarchy, an unnatural leadership has no sense of honour
or integrity. For keeping your promises requires long-term plans. And for one rea-
son or another, the leadership does not believe in long-term plans. In the case of the
Computer Games industry, as has already been explained, the unnatural leadership
originates from the view that software production is an art. And since it is an art
there can be no such thing as a complete production process or a long-term plan for
such a process. Notwithstanding that the weakness of character of the leadership
cannot sustain the execution of any long-term plans. Therefore, the leadership has
a cynical outlook on any long-term plans. This cynicism affects the promises that
the leadership, or anyone else working under that leadership, makes over a period of
more than a few days.

Thus, in the case of revising a schedule drawn up from a feasibility study at the
beginning of the Event-Database Production Process, the leader will neither
reduce the amount of work that needs to be done by the amount schedule is reduced.
Nor will the leader conduct a second feasibility study and then revise the schedule
based on the results of the second study. The leader will simply cut the schedule. And
maintain that the same amount of work must be done, regardless of how much the
schedule has been reduced.

Any schedule or long-term plan that comes from conducting a feasibility study, of
building a game based on the Event-Database Architecture on a target platform,
will require a motivation. This motivation will encourage and inspire the staff to
complete that plan. But the form that this motivation takes also distinguishes a func-
tional hierarchy from a dysfunctional hierarchy.

In a functional hierarchy, a natural leadership has the ability to motivate through
vision. This comes from the eloquent way that the leader can make logical arguments
for what the final game will look like through natural language. As has already been
explained, this eloquence comes from the habit the leader has of engaging in dialec-
tic forms of communication with the staff. That is to say making logical arguments
from different points of view about a subject to reach the truth. And that in turn
comes from a dependency on Forward engineering in software production which
requires a dialectic dialogue, between a software user and a software producer, at
the start. And that in turn comes from the view of software production as a science.

In a dysfunctional hierarchy, an unnatural leadership cannot conjure up a vision
to motivate the staff. As already been explained, the leadership arises from the view

268 Event-Database Architecture for Computer Games

of software production as an art and relies on Reverse engineering in software pro-
duction. That in turn makes it promote lower-level tools that Reverse engineering
depends on. And with that there is a recession away from higher-level tools, includ-
ing natural language which is the highest-level tool. Therefore, the leader cannot
conjure up a vision using natural language.

So instead the leader depends on a permanent state of emergency to motivate
the staff to execute any long-term plans. This emergency will be evoked unsur-
prisingly when any deadlines for the long schedule or long-term plans loom.
This emergency will surprisingly also be evoked in between these deadlines too.
When there is no immediate danger, but the leadership perceives a threat on the
horizon.

For example, after a feasibility study has been conducted in the first step of an
Event-Database Production Process, and a schedule has been produced based
on that study to build the whole game, it may become apparent that the schedule
goes past the final deadline for the game to be submitted for approval by a Game
Publisher or game console manufacturer. Or it goes past the deadline for the game
to be released. Or it goes past the deadline for the game to be demonstrated at an
upcoming public event, like a Video Games conference. In a dysfunctional hierar-
chy, even though this deadline may be between 18 months and 2 years in the future,
the unnatural leadership will evoke an emergency to revise the schedule.

Such revisions will typically be carried out in an ambush. That is to say, the leader
will invite the followers to a meeting under false pretences, with little or no notice:
‘just a quick chat’. Ostensibly, the purpose of the meeting will be to assist the fol-
lowers, which will lull them into a false sense of security. But, before they meet, the
leader will have already decided what help will be offered. In this case the help being
offered is to cut the schedule which goes past the deadline for the game either to be
submitted for final approval, to be released or to be publicly demonstrated. Without
reducing the amount of work that needs to be done or features in the game. A state
of emergency will be declared to justify this. Due to the schedule putting the entire
future of the game, if not the entire company, at risk.

Furthermore, the leader will have decided that the followers will have no option
but to accept this offer. And under no circumstances must the followers be allowed
to leave the meeting without accepting it.

This ambushing technique will not only be employed at the beginning of the
Event-Database Production Process. But throughout the process from beginning
to end.

Whenever the staff come up with a schedule to perform some task. To create some
new concept artwork. To add some 3D models for a new character or a new land-
scape. To add some new animation for that character. To add some Game Object
for a weapon or armour. To add some new Events that control how this new weapon
or armour behaves. To add some music for the new landscape. To add some sound
effects for the new weapon or armour. To add some code to send the new Events.
To add the code for the Game Objects to respond to the new Events and perform
the Actions. And the leadership fears that the schedule is too long. And the leader
suspects a decision to cut that schedule will face opposition, the leader will use an
ambush to bypass that opposition. The anticipation of confrontation will strike fear

269The Nature of the Beast

into the leader. So the leader will drag along one or more allies, who are also part of
the unnatural leadership, into the ambush. To quash any resistance.

Except for this resistance which the leader expects to the decision to cut the sched-
ule, however, the presence of these allies will be virtually redundant. And when the
leader’s decision appears to meet no resistance, the leader will become complacent.

So much so that on some occasions, the leader may even leave before the end of
the meeting. And the leader’s allies will be left behind to finish enforcing the deci-
sion. If that decision were to cut a plan or schedule, of the staff, then the allies would
finish off butchering it. Or if that decision was to change the tools or methods used
to complete the task on schedule, then the allies would be left to provide the details
for the new tools or methods.

Again the reason given to justify this decision will be a state of emergency that
will be declared by the leadership. To either ensure the project remains on schedule.
Or for the sake of keeping good relations with a Game Publisher, a game console
manufacturer, a financial backer or a client. Or for the sake of some marketing strat-
egy to release the game in the summer or at Christmas, to increase sales. Or for the
sake of avoiding the release date of some popular competing product whose market-
ing may drown out the marketing for the game. Or to conform to some spurious legal
requirement that the leadership believes the old tools or methods that were cut vio-
late. Even though the leadership believes that software production is an art. And does
not believe in producing detailed plans that can tell it the knock-on effect of any task
in the production process going over schedule. Nor can it produce any documents to
show that the financial backers or client were happy. Nor does it have the clairvoy-
ance to tell what will happen to sales in the summer or in the winter at Christmas.
Nor does it have the clairvoyance to know the marketing strategy of competitors
will be in the future. Nor can it produce documents to show the legal requirements
that justify the old tools or methods being dropped, and new tools or methods being
adopted to complete a task whose schedule had been butchered.

In a functional hierarchy, the good memory or good records of the natural leader-
ship would keep track of such decisions. And when that decision failed, the leader-
ship would learn from its mistakes and not make that decision again. If that decision
leads to some 3D model of a character or landscape being produced which had errors
in it and did not look like the drawings of the Concept Artists. Or it had too many
polygons in it. Or some animation of a character is produced that was not quite right
and had too many Frames, or the Frames did not smoothly blend into each other. Or
the Frames did not cycle from a neutral starting position back to that starting posi-
tion and allowed it to blend with other animations from the same starting position.
Or some Game Object for a weapon or armour being produced, which did not func-
tion correctly. That did not produce or respond to the Events that it was supposed
to. Or that did not perform the Actions that it was supposed to in response to those
Events. Or some sound or music that did not play when it should or did not sound
right, or was too loud and distorted. Or some feature which was added to a game
design which was initially small and simple but grew into something large and com-
plicated and had to be dropped to remain on schedule. The good memory or records
of the natural leadership would note the decision that produced this error in some
form of documentation. And the leadership would not make the same mistake again.

270 Event-Database Architecture for Computer Games

However, in a dysfunctional hierarchy, the unnatural leadership has a short-term
memory. It does not keep good records of its decisions and the consequences. When
the staff inevitably produce errors in their work because of the dramatic way their
schedules to perform tasks were either cut by the leadership. Or their plans to per-
form the tasks with one tool or method were dramatically revised by the leadership
because of a state of emergency. The staff will be blamed for those errors that result.
If the staff try to defend themselves by reminding the leadership of the cuts to their
schedule, or the changes made to their tools or methods, then the leader will push
back. The leader will claim that the staff should have informed the leader when it
became apparent that the task was going to fail. And indeed the leader would have
said words to that effect. In the meeting in which the schedule or plan was revised,
because of a state of emergency, the leader will instinctively say at the end:

On other occasions the leader will downplay the importance of the task:

But these words would have been just that: words that the leader would say to
reassure the staff to continue with the task. Despite their doubts after the dramatic
revision made by the leadership. Impromptu words that the leadership has no intent
to honour.

Yet when the staff subsequently do run into some trouble and turn to the leadership
for help, the leadership will either claim to be too busy. Or the leadership will delegate
help to someone else. This delegate will of course be under no obligation to help and
will either claim to be too busy as well or delegate to someone else. Or the leader-
ship will isolate the staff. Insisting that they solve the problem themselves and take
responsibility. They should not trouble the leader until all other possibilities have been
exhausted. And somehow be able to read the leader’s mind about what all these other
possibilities are. While bearing in mind that if the staff end up wasting lots of time
trying other possibilities which ultimately fail, the leader will hold them responsible.

On the other occasions where the leadership downplayed the importance of the
task, the staff will suddenly find that it has been raised overnight to an emergency
status. So the staff will have to sacrifice themselves, sacrifice their lives, including
doing overtime, to complete it.

As has already been explained, the unnatural leadership has no sense of honour
or integrity. And the leadership has no intention or capacity to keep its word, to keep
any promises it made earlier to reassure the staff. Not least because of a weakness of
character and a short-term memory.

In a functional hierarchy, the strength of character and good memory or good
records of natural leadership is what makes them love their job. These records
would include the game design, technical design, data design and tools design of

‘If there are any problems, let me know!’

‘Don’t worry! Its not that high a priority!’

271The Nature of the Beast

the Event-Database Production Process. This good memory or good record stops
them from hating their job because of the frustration of repeated mistakes. No one
will love something which after much effort causes them pain or distress and they
make little progress. It is this love that will allow them provide any help the staff may
require during the Event-Database Production Process. Or to keep any promises
they make to reassure staff to begin any task.

In a dysfunctional hierarchy, this love does not come naturally. Instead the unnat-
ural leadership naturally ends up hating the job because of the frustration of repeated
mistakes. Due to a short-term memory and the habit of neglecting to keep good
records. These records will include important documentation required by the Event-
Database Production Process, especially the data design. This neglect, in turn,
comes from the leadership’s view of software production as an art. Any instance of a
production process is merely an example of the art. Therefore, there can be no such
thing as a complete production process or a complete design (including any records
such as the designs of the Event-Database Production Process). And a belief in
such things is merely a futile attempt to limit the expression of that art.

Despite the consequences of this outlook there are many academic courses3 which
teach the practices of unnatural leaderships. That nominally claim to prepare its
students for leadership but in fact produce unnatural leaderships or vicarious leader-
ships. That reduce leadership down to delegation of responsibility and enforcement.
And neglect the importance of love. That is to say, loving the job and the relationship
that has with having a good memory or keeping good records. To stop them hating
the job because of the frustration of repeated mistakes. And often in the Computer
Games industry amongst the unnatural leaderships, you will find graduates from
these academic courses.

4.1  THE MARRIAGE OF THE BEAST

In the previous chapters, it was explained that although in a functional hierarchy, it
would be easy to judge the success or failure of a production process, including the
Event-Database Production Process. But in a dysfunctional hierarchy, it would
be hard to judge because of the way the hierarchy obfuscates the truth. One of the
reasons for this is the short-term memory or habit of not keeping good records of the
unnatural leadership that directs the process in a dysfunctional hierarchy. Ironically,
in a functional hierarchy led by natural leadership, the leadership has a good mem-
ory or good records from which you could judge the success or failure of the pro-
cess. And as a result more problems surface in a process led by a natural leadership
than one led by an unnatural leadership. So, on the surface, an Event-Database
Production Process led by a natural leadership looks far worse at first sight, than a
process led by an unnatural leadership. How you may wonder, if an unnatural leader-
ship does not enjoy the cult of personality or popularity of a natural leadership, can it
pull this off? The answer is a marriage of convenience which you need to understand
to uncover the truth about what lies beneath the surface in a dysfunctional hierarchy.

From time to time, the state of emergency, declared by an unnatural leadership
in a dysfunctional hierarchy to motivate the staff, will subside. And the problems
and Bugs in the software will be solved, or at least appear that way. The staff will

272 Event-Database Architecture for Computer Games

have dealt with the crisis by doing overtime either during the week or at weekends
to complete the work necessary before the deadline for the current milestone. This
will give the unnatural leadership and the staff some breathing room before the
next milestone or deadline in a production process. This would include the Event-
Database Production Process.

Therefore, it follows that one of the best times to judge a process led by an unnatu-
ral leadership is just before a deadline. When the problems or Bugs in the software
rise to the surface. It is academic to judge a process, after a deadline, like the end of
a project. At the end of a project, when a Post-mortem meeting4 is typically carried
out in the Computer Games industry, the damage has already been done. The staff
will have already done their utmost to cover up the problems. There will be little or
no records. The records (i.e. the designs produced by the production process) will be
well out of date.

In a dysfunctional hierarchy, the number of problems or Bugs in a few days before
the deadline will rise. It will be clearly visible regardless of whether there were any
records or not. And the Game Testers may catch some of them and produce records
in the form of ad hoc tests and reports they perform before the deadline. These
numbers will spike up dramatically getting towards the deadline and fall off precipi-
tously just before the deadline.

By contrast in a functional hierarchy, the number of problems or Bugs will be
steady throughout each phase between each deadline. And it will be obvious from
the good memory or the good records that the natural leadership keeps of these prob-
lems. These records will include the designs, game design, technical design, data
design and tools design of the Event-Database Production Process. Especially the
data design which is kept up to date by the Database Administrator which will have
a record of all the features of the game. Since this can be used to test the Events in
the Game Database, used to implement those features, against their description in
the data design. To produce a far more exhaustive and accurate test than the ad hoc
test performed typically by the Game Testers in a Software Evolution Process in the
Computer Games industry.

Nevertheless, before the end of the project, during each phase between the dead-
lines, in a dysfunctional hierarchy, the experience in each phase will teach the staff
an invaluable lesson. It will become clear that the leadership cannot be trusted.
Whenever a problem has been presented to the leader, it becomes aggravated by the
leader’s self-defensive reactions. And their professional autonomy, that is to say, the
vicarious leadership that the unnatural leadership practices through them, has been
lost. So it would be better to anticipate what the leader wants to see or hear, and pres-
ent it, rather than reveal any problem.

Thus, a marriage of convenience will begin between the leader and each of these
staff. The leader will be happy because the work given to the staff will seem to be
dealt with effortlessly. The followers or staff will be happy because, so long as no
problems are revealed, the leader will not interfere. And the leadership will continue
to act through them, vicariously, to conduct the leadership. Thus giving the staff the
appearance of autonomy or authority.

In a dysfunctional hierarchy, even though they hate each other, the unnatural lead-
ership and the staff will both connive to suppress the truth, about the problems or

273The Nature of the Beast

Bugs in the software. On the one hand, the staff will suppress the truth about the
problems and Bugs in the software. And on the other hand, the leadership will sup-
press the truth about the authority and autonomy that the staff have. Both will believe
that if they hear no evil, see no evil and speak no evil, then they will be safe from
harm. But that will be the insidious part of the corruption. By suspending their sense
of judgement, they will be giving up one-half of what makes them intelligent: their
sense and sensibilities. By suspending their sense of judgement they will be suspend-
ing their sensibilities. And the self-defensive decisions they make in reaction to their
senses will now be unchecked and deluded by its unstoppable momentum.

It is this marriage of convenience that suppresses the truth about the problems
or Bugs in the software, and the software production process, including the Event-
Database Production Process.

By contrast, in a functional hierarchy, the natural leadership leads by example,
not vicariously, through the example of others i.e. the staff. The staff have nothing
to gain from suppressing the problems or Bugs in the software. The sense of honour
of the leadership, along with good memory or good records and the strength of char-
acter, makes the leadership naturally expose any problems or Bugs in the software
themselves. In the course of testing that the decisions of the leadership are in keeping
with its words, the problems or Bugs in the software are naturally exposed.

This leads to another distinguishing characteristic between unnatural leadership
and natural leadership. That is the primary source of problems or Bugs reported in
a dysfunctional hierarchy, under an unnatural leadership, is the clients or the mar-
ketplace, outside of the hierarchy. Where the forces which drive the marriage of
convenience has no effect. While the primary source of problems or Bugs reported
in a functional hierarchy is the natural leadership itself. Practically this means that
if you want to mitigate the effects of a dysfunctional hierarchy in the Computer
Games industry, you should use Third Party Game Testers5 who are not within the
hierarchy. That is to say you should use Game Testers who are in another company.
There are many companies available that provide this kind of service. For a func-
tional hierarchy, this will not make any difference. For the number of problems or
Bugs reported by the natural leadership will be greater than any report you could get
outside of the hierarchy.

The marriage of convenience leads to another distinguishing characteristic of an
unnatural leadership and a natural leadership. In a dysfunctional hierarchy, both the
unnatural leadership and the staff will become paranoid. They will believe that any
strangers to the hierarchy who expose the problems in the marriage, either inten-
tionally or inadvertently, to be an existential threat. For example, hiring a Third
Party Game Testers, outside of the hierarchy, to test the game would be perceived
as a threat or some great evil. The leadership and some of the staff will unite in
their opposition to such strangers. However, if there were any evil in the marriage,
it would be the narcissism6 which prevents them from seeing the truth. The truth is
that there are far more problems, Bugs or errors in the software they create than they
are reporting. And the number of errors being reported once the Third Party Game
Testers has been introduced should go up.

In a functional hierarchy, there would be no opposition to using a third party to
conduct the function of the Game Testers. And the number of errors being reported

274 Event-Database Architecture for Computer Games

once the third party has been introduced should go down, compared with the num-
ber being reported by the hierarchy before the third party was introduced. That is to
say the number of errors being reported by the natural leadership of the hierarchy,
by testing the Events in the Game Database, against the description of them in the
data design, to perform an exhaustive test of a game built with the Event-Database
Architecture.

This honesty is key to a natural leadership’s cult of personality or popularity and
makes it credible to the staff. A leader does not have to be perfect to be credible: only
open and honest. If the leader is willing to admit mistakes and is open about it, then
the rest of the staff will be willing to do likewise.

By contrast, in a dysfunctional hierarchy, in the marriage of convenience between
an unnatural leadership and the staff, the leadership is not credible. It is the opposite.
The staff find the leadership incredulous, that is to say unable or unwilling to believe
in it. The leadership is neither open nor honest about its mistakes. And neither are
most of the staff willing to be open and honest about their mistakes. Apart from new
members or strangers to the hierarchy.

This credibility on the one hand, and incredulity on the other hand, also applies to
the channels of communication in a functional and dysfunctional hierarchy.

In a functional hierarchy, your work would be controlled through one commu-
nication channel; between you and the natural leadership. Both you and the leader-
ship can see when the number of tasks is getting too high. And you can come to an
agreement on the priority of the tasks. This is a credible form of communication and
keeping track of your tasks.

In a dysfunctional hierarchy, there will be multiple communication channels all
vying for your attention. You will not only receive requests directly from the unnatu-
ral leadership. But requests will also come indirectly from the army of delegates that
the leadership dispatches to perform the vicarious leadership. That in turn comes
from the marriage of convenience between the unnatural leadership and its followers.

Some of the delegates dispatched by the leadership will be literally merely repeat-
ing what the leadership has already told you. None of whom will care what tasks
other delegates have given you. Leaving you to incredulously manage yourself, keep
track of the number of tasks, decide when it is too high and set the priorities for the
task, all by yourself.

These delegates will, in theory, have the same authority and autonomy as the
leader. And the leader will reward those delegates. In practice, they will all be mere
vassals of the leader’s fiefdom. Their authority and autonomy over any assignments
they give you, and their knowledge of their master’s will, will be as ethereal as their
master’s patience.

For example, suppose you were a Sound Designer or Sound Engineer, and you
received a request from one set of Game Programmers to create the sound effects for
the one of the Front-End menus shown when the game starts. That the Programmers
will use to make that menu. Another set of Programmers will come along a few
hours later after and ask for the sound effects of a second menu which they were
working on. And a few hours after that, another set of Programmers come along to
ask for the background sound effects and atmospheric music which suits the mood of
a wooded forest on the outskirts of the village, say in the game LPmud.

275The Nature of the Beast

Each Programmer will be completely oblivious to the request of the other
Programmers. Each will expect their request to be met immediately declaring
that it is urgent. Regardless of what other tasks you have. You will have to make
assumptions for most of these sound effects and music. Since, typically in a Software
Evolution Process in the Computer Games industry, there will be no game design
which describes what each effect or music should sound like. You will have to make
assumptions about whether all of the sound effects for the buttons on the first or
second menu should be the same. What common theme if any should run through
these sounds? You will have to make assumptions about what kind of sounds should
be heard in the forest. Should it include sounds of people in the nearby village? What
the theme of the atmospheric music should be? Should it just consist of modern, clas-
sical or medieval instruments? What should the priority of all these tasks be?

So you make your assumptions because they all claim their request is urgent. You
make the Game Objects for all the buttons in the first and second menus produce
the same Secondary Event which plays back the same sound effect. And you add a
Secondary Event which plays back the sound effects of wind blowing through the
trees and bushes in the woods, birds singing in the trees and sound of a river rushing
by and the sound of villagers nearby. And you add a Secondary Event which plays
back music from Evard Grieg’s Morning Mood when the player enters the wooded
forest.

Only to find out afterwards, that the Programmers who asked for sound effects
for the first menu wanted a completely different sound from the ones who asked for
sound effects for the second menu. And the Programmers who wanted the atmo-
spheric music for the wooded forest in fact wanted some music made with medieval
instruments. And you have to revise all of the Database Records for the Game
Objects, Secondary Events, sound and music you have added. And that the priority
for all the tasks has become even more urgent because of the delay caused by the
revision. Not because all of these changes are necessary. But because they all want
to impress the unnatural leadership and keep the autonomy which the marriage of
convenience affords them.

It does not take a genius to imagine what personalities this kind of scenario will
breed. It will not be the intelligent that succeeds in this atmosphere. If any of the
followers had sense and sensibility, they would instinctively recognise the situation.
They would recognise that there could not be any progress without courtesy. They
would indulge others without giving their approval and despite the facts. And just as
importantly, they would intervene when they see others being coerced to do likewise.

However, those who had no intelligence would show no integrity, compassion or
restraint. They would be loud, crass and obnoxious to get their way. The atmosphere
would be charged with testosterone and macho bravado. Many personal conflicts
would thrive as the ambitious followers vied to fill the void left by the vicarious
leadership.

So, given this scenario, the chances of the success of any intelligent person, or the
prevalence of women,7 will be slim.

This leads to another distinguishing characteristic between a functional and a
dysfunctional hierarchy. If you put women under a natural leadership of a functional
hierarchy, then their productivity will be indistinguishable from the rest of the staff.

276 Event-Database Architecture for Computer Games

If you put women under an unnatural leadership of a dysfunctional hierarchy, then
their productivity will be lower than the rest of the staff.

To measure their level of productivity, you could either use the Event-Database
Architecture Productivity Formula8 described in later subchapters. Or you could
measure their level of knowledge of the project using Event-Database Architecture
Knowledge Test described in earlier subchapters. And assume that their level of pro-
ductivity would be proportional to their level of knowledge.

In a functional hierarchy, the overall level of productivity, in one phase or between
two deadlines of the Event-Database Production Process, should fall once the
women were taken out of the project. And it should rise back up again once they
were added back, in the next phase or before the next deadline. Likewise, their level
of knowledge should not be significant different from the rest of the staff.

In a dysfunctional hierarchy, the overall level of productivity, in one phase or
between two successive deadlines of the Event-Database Production Process,
when the women were taken out of the project, should be the same. As the level of
productivity in the next phase or before the next deadline, when the women were
added back to the project. And their level of knowledge should be significantly lower
than the rest of the staff.

4.2  THE TIME OF THE BEAST

In the previous chapter, it was explained how the unnatural leadership in a dysfunc-
tional hierarchy is closed. That is to say, the marriage of convenience in a dysfunc-
tional hierarchy causes problems or Bugs in a software production process, including
the Event-Database Production Process, to be suppressed. The unnatural leader-
ship offers promises of autonomy and authority to the staff who show promise when
performing tasks, in order to conduct the leadership vicariously. And these staff, in
turn, suppresses problems or Bugs to keep that autonomy or authority. Whereas in a
functional hierarchy, the natural leadership is open and honest. That in turn comes
from its sense of honour or integrity to keep its word or its promises. That in turn
causes it to check the outcome of its decisions meets its expectations. That in turn
causes problems or Bugs to naturally rise to the surface. And that the main source of
errors reported in the process is the natural leadership.

It would be a mistake to presume that the pressures of time account for a dys-
functional hierarchy being closed and a functional hierarchy being open. Given tight
time constraints to finish a project, it may seem reasonable for a few corners to be cut
redundant. Given more time would not what appears to be an unnatural leadership
redundant. Changing the sentence into a question. exhibit the same signs of a natural
leadership and be credible i.e. open and honest?

But it is not a question of time. It is simply a matter of knowledge. The leadership
cannot manage a project without knowledge of the risk of the decisions it makes and
the consequences. The staff underneath that leadership also cannot perform their
tasks well without knowledge of what it entails.

As has already been explained, in a dysfunctional hierarchy the unnatural leader-
ship acquires its position because it views software production as an art. And it has
a dependency on Reverse engineering. And it promotes the lower-level tools that

277The Nature of the Beast

Reverse engineering depends on. This makes the small band who excel at Reverse
engineering have a superior level of knowledge compared to the rest of the staff. And
that is what promotes that band into the leadership.

By contrast, in a functional hierarchy the natural leadership acquires its posi-
tion because it views software production as a science. And it has a dependence on
Forward engineering. And it promotes higher-level tools that Forward engineering
depends on. The highest-level tool is natural language. And with the promotion of
that, all the staff acquire the same level of knowledge.

If it were possible, in a dysfunctional hierarchy, for all the staff to acquire the level
of knowledge necessary in order to fulfil their role, despite the corners they cut, then
they may have a hope of achieving their objectives within a short time frame. But
because only the unnatural leadership has the superior level of knowledge required,
and the rest of the staff lack that knowledge, there will be no hope whatever the time
frame.

And the converse is true in a functional hierarchy. Since the natural leadership
promotes higher-level tools, especially natural language that in turn promotes the
staff acquiring the same level of knowledge, there is hope. There is hope that they
can achieve the goals of the project, no matter what the time frame. So long as the
resources required (including the staff) were available to achieve this.

Occasionally, from time to time in the Computer Games industry, a Post-mortem
meeting is called at the end of a project. For the staff to get together and discuss any
lessons they have learnt from the software production process just ended. And in
discussions, the subject of time will be brought up. Some will say

Others will say

But these are euphemisms for a lack of knowledge. And what they really mean is

This leads to another way to distinguish between a functional hierarchy and a dys-
functional hierarchy. Hold a Post-mortem meeting at the end of an Event-Database
Production Process to discuss the lessons to be learnt from the project. Whenever
the word ‘time’ is used to explain the reasons for problems or Bugs in a task, ask
the person who said it to give an estimate of how much time they think would be

‘There was not enough time to do this!’

‘There was not enough time to do that!’

‘No one knew how to do this!’
‘No one know how to do that’.

278 Event-Database Architecture for Computer Games

required to complete a similar but new task? Ask the leadership how much time they
think would be required to complete the same task?

In a functional hierarchy, the estimate of the staff and the natural leadership will
be the same. In a dysfunctional hierarchy, the staff will either not give an estimate
because they are still ignorant of what the task involves. Or the estimate will be
very different from the estimate given by unnatural leadership. Furthermore, if you
ask the leader to make the longer estimate the default estimate for future projects,
then the leadership will object. Since, as already explained, they view software pro-
duction as an art. And they would object to any limitations, including time, being
imposed on that art.

For example, suppose in a Post-mortem meeting you hear someone say

In a dysfunctional hierarchy, only the unnatural leadership will have the superior
level of knowledge to add the Front-end menu easily. The staff who had to add the
menu to the game did not know how to do it. They were not sure how easy it was to
add the menu. They started to add it and found out later on that there was something
missing in their knowledge. And at the Post-mortem meeting, they still will not be
able to give you an estimate of how long it would take to add a new menu. Or this
would be very different from the estimate of the leadership.

In a functional hierarchy all of the staff would have the same level of knowledge.
And the feasibility of adding a menu would be obvious to the natural leadership
and the staff from the start. They would have engaged in a dialectic dialogue. That
is to say that they would have made logical arguments against or for adding that
menu. And they simply would not have attempted to add the menu when it became
obvious from this dialogue that it was not feasible. And the subject would not have
been brought up in a Post-mortem meeting. Furthermore, the good memory or good
records of the natural leadership will include records of the meeting where the feasi-
bility of adding the new menu was discussed.

Any Post-mortem meeting requires evidence through which the staff can sift
through to investigate what happened during the production process. In a dys-
functional hierarchy, the unnatural leadership views software production as an art.
Therefore, its decisions are ad hoc, made to address immediate problems or needs
at hand without consideration for the wider applications or implications, including
time. Thus, there are little or no records kept during the production process. There
is little evidence to sift through during a Post-mortem meeting. In functional hier-
archy, the natural leadership views software production as a science. Therefore, its
decisions are planned and premeditated, to take into account the wider implications,
including time. Thus, there are lots of records kept during the production process.
And there is a lot of evidence to sift through during a Post-mortem meeting.

These two ways in which Post-mortem meetings will be conducted will provide
you with a microcosm, a miniature encapsulation, of how all the meetings have been

‘There was not enough time to add the Game Objects, Events, Actions, and
Database Records to create the Front-end menu.’

279The Nature of the Beast

conducted during the Event-Database Production Process, in both a functional
and dysfunctional hierarchy.

In previous meetings about tasks that were yet to be completed, in a dysfunctional
hierarchy, the meeting will have begun with little or no materials to assess the feasi-
bility of that task, given the time to do it. Instead, the unnatural leadership will have
made wild overly optimistic speculations about the feasibility. And due to the mar-
riage of convenience, between the leadership and some of the other staff, those staff
will also have joined in with these optimistic speculations. There will have been no
design, game design, technical design, data design or tools design from the Event-
Database Production Process, before them when the assessment was made. There
will have been no record of any similar task that had been done in the past, estimates
of how long this took and notes of any problems that were encountered.

In many parts of the Computer Games industry, an Agile Development meth-
odology will be employed when organising these meetings. In this methodology,
the nominal teams of Game Programmers, Game Designers, Game Artists, Sound
Designers or Engineers and Game Testers have a ‘Sprint Planning’ meeting. Where
they decide what tasks they will be doing in the next phase of the production process
or ‘Sprint’. This lasts typically two weeks. In that meeting, the staff will be given
tasks to be completed for the next ‘Sprint’, by members of the leadership. This may
be a Lead Programmers, Lead Artists, Lead Game Designers, Lead Game Testers
or Game Producers. The staff will literally make up numbers on the spot, about
how much time will take to perform the tasks. Even though half of the tasks may be
things they have never done before. This may be adding a new menu, a new character
to the Game World, a new animation of an existing character, a new weapon with
some unique form of attack, a new armour with some unique form of defence, a new
sound effect or music to accompany the action in the Game World. These estimates
will be made regardless of time. Bear in mind, that this will be part of a larger proj-
ect. Where any number of changes could have been made to the Game World, by
other staff, which they were unaware of. And if you wanted further evidence of a
dysfunctional hierarchy then get the records (if any) of the time estimates for tasks
made by the staff in the ‘Sprint Planning’ meetings. And compare these times with
the real time it took to complete those tasks in that ‘Sprint’ or the next ‘Sprint’. Or
compare these times with the estimates given by the staff in the Post-mortem meet-
ings. You will find a huge discrepancy between the estimates and the real times, or
between the estimates given during the ‘Sprint Planning’ meetings and those given
in the Post-mortem meetings.

Even though the pressures of time may seem to affect their behaviour, half the
tasks and methods they use will be those they set themselves. These tasks will be set
regardless of the effects on time to complete the project.

Whereas, in a functional hierarchy, in previous meetings about tasks that were
yet to be completed, the meetings will have begun with lots of materials to assess
the feasibility of the task, given the time to do it. The natural leadership will have
presented either the game design, technical design, data design or tools design of
the Event-Database Production Process in the meeting. Most important of these
will have been the data design which defines the natural language of the project, the
Events, Game Objects, Actions, Database Tables, Records or Fields. The good

280 Event-Database Architecture for Computer Games

memory or good records of the leadership will include a record of any similar task
that had been done before the meeting, with estimates of how long this took, and
notes of any problems that were encountered. And the time it will take to do the new
task will be set by the natural leadership based on a dialectic dialogue with the staff
and the materials before them.

This leads to another distinguishing characteristic between a functional and dys-
functional hierarchy. In a functional hierarchy, the pressures of time come from the
natural leadership. The staff do not place this pressure on themselves. In a dysfunc-
tional hierarchy, the pressures of time come from the staff. And the staff place this
pressure on themselves. Therefore, in a Post-mortem meeting at the end of a project,
if you hear pluralistic nouns or pronouns like

then that would be a sign of functional hierarchy.
If you hear self-incriminating phrases or pronouns like

then that would be the sign of a dysfunctional hierarchy.
Popularity and self-incrimination are another distinguishing characteristic

between a functional and dysfunctional hierarchy. As has already been explained,
in a functional hierarchy, the natural leadership leads by personal example. Whereas
in a dysfunctional hierarchy, the unnatural leadership leads vicariously through the
example of others. In the former, this leads to the cult of personality or popularity of
the natural leadership. In the latter, this leads to self-incrimination of the staff who
the vicarious leadership nominally delegates authority and autonomy to. With this
nominal authority and autonomy, the staff volunteer estimates of how long it would
take to complete tasks. Or how tasks will be done? Or whether tasks can be done in
the time allocated? Even though the vicarious leadership will undermine every one
of these decisions at a whim, on an ad hoc basis, after these have been made. As a
result, the staff are the ones who face the risks of the decisions made. They are the
ones who end up, unfairly, taking responsibility for the failures of these decisions
and feeling guilty. They are the ones who end up either incriminating themselves
when something goes wrong or incriminating time.

Popularity and self-incrimination will also characterise how natural leadership or
unnatural leadership will deal with a client or the financial backers of a project. And
their interaction with the client will also show their attitude towards time.

For example, in the Computer Games industry, the financial backers of a game
will typically leave the majority of its game design to the leadership’s discretion.

‘I think the leadership did not give enough time to do this!’
‘I think we did not give enough time to do that!’

‘I did not give myself enough time to do this!’
‘I did not give myself enough time to do that!’

281The Nature of the Beast

Likewise, the production process, such as the Event-Database Production
Process, would be largely left to the leadership’s discretion, including any tools
or methods the staff used. The investors would examine the work at regular inter-
vals or milestones. But how the leadership moved from one interval to the next
would not be dictated by the investors. So long as the work achieved between the
intervals or milestones met their expectations, the process would continue. The
deal with them will involve payment, at these regular intervals, based on how
much work the hierarchy had done.

In a functional hierarchy, the natural leadership will achieve popularity with the
client, by keeping its word. And that in turn means that it values the Feasibility
Study at the beginning of the Event-Database Production Process and being able
to assess whether the tasks between each milestone would be possible, given the
time left to do it. The natural leadership’s sense of honour and courage makes it open
and honest about the feasibility. The leadership is not afraid of losing the contract or
missing a payment because it cannot complete the tasks required due to an unreal-
istic schedule.

For example, for the game LPmud, there would be nine main features:

Settlements
Buildings
Mountainous Landscapes
Other Landscapes
Creatures
Non-Player Characters
Player Characters
Combat System
Treasures
Puzzles/Quests

In the first step of the Event-Database Production Process, the leadership
would set a task to implement a fraction of each of these features in the Feasibility
Study. So that the time taken to implement this fraction could be extrapolated to
estimate the time it would take to implement the whole feature. So the goals of the
Feasibility Study, beyond the minimum features required of a game based on the
Event-Database Architecture, would be the implementation of

10% of the Settlements
10% of the Buildings
10% of the Mountainous Landscapes
10% of the Other Landscapes
10% of the Creatures
10% of the Non-Player Characters
10% of the Player Characters
100% of the Combat System
10% of the Treasures
10% of the Puzzles/Quests

282 Event-Database Architecture for Computer Games

The time taken by all the staff to implement this cross-section of these main
features would then be extrapolated upwards to work out the time it would take to
implement the main features completely, as well as the total time. And these esti-
mates would be documented in the game design, along with the deadline for the
project. If the estimated total time exceeded the deadline for the project, then the
document would clearly state this.

In a dysfunctional hierarchy, the unnatural leadership ends up incriminating
themselves. They will volunteer assurances and promises to the client, which their
weakness of character cannot keep. The leadership will not value the Feasibility
Study at the beginning or the middle of the Event-Database Production Process
and being able to assess whether the tasks between milestones are possible, given the
time left to do it. The leadership will not have the courage to face negative results.

The leadership will realise that the more new features are shown to the financial
backers, the more willing they will be to make the next payment. But the leadership
will also know that the more new features added, the greater the workload will be
on the staff.

When dealing with the financial backers, the leadership will agree to a list of
features with the motive of getting as much payment as possible. A minority of that
list will come from the investors. But the majority of it will be the impromptu ideas
of the leadership will agree to do to secure funding.

In the Feasibility Study, the assessment of the risk of these ideas would not be
objective: but subjective.

For example, for the game LPmud, in the Feasibility Study at the beginning of
the Event-Database Production Process, you may find written in the game design
an assessment of the risks of certain features that were to be added to the game. The
assessments would simply be comprised of a list of items which leadership believes
could go wrong.

These items would be drawn up pessimistically, in an impromptu fashion. It will
include tables or graphs with numbers which suggest that the assessment was math-
ematical or objective. However, if you looked closely at these figures, you would find
that they were always nice round numbers, 50%, 60%, 40%, 50/50, 30/70 and so on
(You can see an example of these figures in Table 4.1).

All of the features will have deadlines set before any detailed plan has been drawn
up, for how these would be implemented.

However, after they have returned from the meeting with the investors, the leader-
ship will present the list, to the rest of the staff in a different light. They will present
it as if it were forced on them, by the financial backers. And by presenting this list
the unnatural leadership will be incriminating themselves to the staff. And when the
staff fail to deliver some of the items on that list by the next milestone, the items on
the list will end up incriminating the leadership to the client.

This leads to another distinguishing characteristic between a natural leadership
and an unnatural leadership. If you conduct a Post-mortem at the end of the proj-
ect, ask for the documents that were used to predict how long the Event-Database
Production Process would take. In a functional hierarchy, these documents will
show an objective prognosis based on empirical measurements of time gathered by
all the staff. These measurements will be in either the game design or data design,

283The Nature of the Beast

which are the documents that were meant to contain this information according to
the steps of the Event-Database Production Process. In a dysfunctional hierarchy,
these documents will either not exist. Or these will show a subjective prognosis
based on the non-empirical probabilities set by the unnatural leadership. That in
turn will be based on the leadership’s superior level of knowledge, over the rest of
the staff.

If these documents did exist and the prognosis was sincere, then the staff will have
received the same prognosis as the client. Therefore, if you conduct a Post-mortem,
ask the staff what prognosis they were given for the how long the Event-Database
Production Process would take. And whether they were given a prognosis of how
long each individual task the staff were given would take or whether they had to
decide this themselves. In a functional hierarchy, the prognosis would be the same
with respect to the overall process and each individual task, for the staff, the docu-
ments and the client (if available). In a dysfunctional hierarchy, the prognosis will
either be missing with respect to the overall process and each individual task, for the
staff, the documents and the client. Or the prognosis will be different with respect
to the overall process and each individual task, for the staff, the documents and the
client.

When the staff were given a new task to perform to add some feature to the game,
for which there was no precedent, it would be very hard to estimate how long it would
take perform. They could either research how to perform that task, then give an
estimate from the results of that research and then add that feature. Using whatever
Events, Actions, Game Objects, Database Tables, Records or Fields are required.
Or they could do the research, the estimation, and the addition all at the same time.

TABLE 4.1
Example of Table of Risks in a Software Evolution Process in the Computer
Games Industry

Feature Risks Probability (%) Delivery Date
Settlements High polygon count 10 Week 1–12

Buildings High polygon count 10 Week 1–12

Mountainous landscape Procedural generation errors 50 Week 1–12

Other landscapes Procedural generation errors 50 Week 1–12

Creatures Animations
AI

10
60

Week 1–8
Week 13–20

Non-player characters Animations
AI

10
60

Week 1–8
Week 13–20

Player character Animations 10 Week 1–8

Combat system Small size (2 characters)
Medium size (16 characters)
Large size (>16)

10
20
30

Week 1–12
Week 13–15
Week 16–18

Treasures New animations for each weapon
New animations for each armour

70
70

Week 13–20
Week 13–20

Puzzles/Quests New quest characters 70 Week 13–20

284 Event-Database Architecture for Computer Games

But in the former case, although the research is open-ended, the estimation and the
addition are not. This is the more scientific of the two methods. Whereas in the lat-
ter case, the research, estimation and addition are all open-ended. This is the more
artistic of the two methods. The staff would literally be improvising the addition of
that feature, in an ad-hoc non-repeatable manner. There is a lot of trial and error and
a lot of time is consumed by the errors. This method is called ‘Prototyping’ in the
Computer Games industry. Most modern game-editors excel at ‘Prototyping’. This
should not be confused with a real prototype in other industries.

In other industries, a real prototype is the first product of a production process built
to test a concept or that process. Therefore, a prototype has to be complete for the test
of that concept or process to be complete. But in the Computer Games industry, the
feature being added to the game is not complete, and the process is not known. In
other industries, the process that produces the prototype is known and repeatable. In
the Computer Games industry, the process is unknown and therefore not repeatable.
And the goal of ‘Prototyping’ is to find that process. In other industries, the process is
known before the prototype is produced. In the Computer Games industry, the process
is known after the prototype is produced. And this is done by using Reverse engineer-
ing to work backwards, from the prototype to the beginning of that process.

As already been explained, a functional hierarchy arises from the view of software
production as a science, that relies on Forward engineering. The natural leadership
arises from those who excel at promoting the higher-level tools that Forward engineer-
ing depends on. And this leadership would naturally promote the more scientific of the
two methods. A dysfunctional hierarchy arises from the view of software production
as an art that relies on Reverse engineering. The unnatural leadership arises from those
who excel with the lower-level tools that Reverse engineering depends on. And this
leadership would naturally favour the more artistic of the two methods i.e. ‘Prototyping’.

Therefore, in a Post-mortem meeting at the end of an Event-Database Production
Process, ask the staff whether when they came up with estimates for how long each task
would take, whether they did so by a scientific ‘Research’ or an artistic ‘Prototyping’
method? If the latter, then ask the staff whether they felt they had enough time to do
‘Prototyping’ or not? Ask whether they feel very little or a lot of the ‘Prototyping’
work ended up in the final product? If the former (i.e. the staff do not use the word
‘Prototyping’ to describe how they estimated the time it took to complete task), ask
them how would you describe the method you used to provide estimates?

In a functional hierarchy, the staff should have come up with estimates of time to
complete tasks based on a scientific ‘Research’ method: not an artistic ‘Prototyping’
method. And therefore no ‘Prototyping’ work should have ended up in the final prod-
uct. In a dysfunctional hierarchy, there will be lots of ‘Prototyping’ work. And there
will not have been enough time to complete that work. And a lot of that ‘Prototyping’
work will have ended up in the final product.

4.3  THE TEMPLE OF THE BEAST

In the previous chapter, the view of time by a natural leadership of a functional
hierarchy and an unnatural leadership of a dysfunctional hierarchy was discussed.
Both would use different methods in the Event-Database Production Process to

285The Nature of the Beast

evaluate how long it would take to perform tasks, to add features to a game and
to perform those tasks. The use of a scientific ‘Research’ method and an artistic
‘Prototyping’ method was linked to the former’s view of software production as a
science and the latter’s view of software production as an art. A scientific ‘Research’
method involves three distinct phases:

1.	 investigating how a task can be performed,
2.	producing an estimation based on the results of the investigation, and
3.	 implementing that task.

The first phase is open-ended. But the last two phases are not open-ended and the
last two phases are repeatable. An artistic ‘Prototyping’ method involves performing
all three phases, the investigation, the estimation and implementation, all at once. As
a result, all three phases are open-ended, and therefore not repeatable.

Now, in a functional hierarchy this distinction will be too subtle to make a dif-
ference to a natural leadership. Since the leadership views software production as a
science and depends on Forward engineering, it will focus on managing the process,
the Event-Database Production Process, not the staff. And promoting the use of
higher-level tools in that process that Forward engineering depends on. The highest-
level tool is natural language.

But in a dysfunctional hierarchy, this distinction will be huge. Since the leadership
manages the staff, not the process. The unnatural leadership is a vicarious leadership
which will focus on the staff the leadership uses vicariously to perform its role.

This distinction will be most obvious in how a natural leadership and an unnatural
leadership view the use of Performance Reviews or Self-Appraisals to assess the staff.
In these Appraisals, a natural leadership will find nothing of interest about the produc-
tion process. But a unnatural leadership will find great interest in the promising staff
who, through the use of an artistic ‘Prototyping’ method, look highly productive.

4.3.1 T acit Approval and Disavowal

In the Computer Games industry, typically a Performance Review or Self-Appraisal
will be used to assess the staff, periodically every three months or every six
months. This Appraisal focuses on the staff involved in the production process,
but not the process itself, which is normally a Software Evolution Process. Critics
of Performance Reviews or Self-Appraisals say that the main problem with these
Appraisals is that they focus on the staff rather than the process. The appraisal acts
like a form of Quality Control, to detect when errors or defects have occurred in
the process that the staff are part of. In this case, this process would be the Event-
Database Production Process. As such Appraisals address the symptoms of the
process (i.e. the errors or defects) rather than the cause which is the process itself.
That in turn leads to a tacit approval of the process which may itself be the cause.

As has already been explained, an unnatural leadership in a dysfunctional hier-
archy views software production as an art. And it relies on Reverse engineering.
And there is a recession in a process led by an unnatural leadership, away from
higher-level tools towards lower-level tools that Reverse Engineering depends on.

286 Event-Database Architecture for Computer Games

This includes a recession away from the highest-level tool which is natural language.
And with the recession away from natural language, as in the Software Evolution
Process, as in the Tower of Babel, there is chaos. The same outcome would occur in
the Event-Database Production Process under an unnatural leadership.

Some of the staff who have worked elsewhere in the industry will recognise this
chaos straight away as a symptom of the unnatural leadership. And tacitly approve
or publicly disavow the leadership immediately. Those staff who are new and have
not worked elsewhere in the industry will not be recognise it. They will believe that
the chaos is simply the only way you can run a production process in the Computer
Games industry, including the Event-Database Production Process. This will sim-
ply be the nature of the beast.9 And they will give their tacit approval. However,
the opportunity will arise when they will be forced to give an explicit approval or
disavowal in a Performance Review or Self-Appraisal meeting.

In the Performance Review or Self-Appraisal meeting, each staff will be given a form
with questions to answer before the meeting. The five most important questions will be

After staff have answered these questions, the form will be given to the leader-
ship, who will review the staff’s answers and respond to them. In theory, each staff
should see the leaderships’ response to the answers, on the form, before the meeting.
And then the meeting between the staff and the leadership takes place. And they
agree in the meeting on an overall score and set new goals for the next Performance
Review or Self-Appraisal meeting in a few months’ time.

In practice, the unnatural leadership will not respond to the staff’s answers on the
form prior to the meeting. Instead, the leadership’s response will come during the
meeting. And thus, the staff will have no time to prepare any answers to the leader-
ship’s rebuttals. And after the exchange of unplanned arguments, the leadership tries
to give a score for the staff’s performance based on what was said in the form and
the meeting. The score is normally one of five

1.	excellent
2.	good
3.	average
4.	below average
5.	unacceptable

In these meetings, the staff will have a perfect opportunity to comment on the
chaos they see around them that results from the unnatural leadership. They will
have to either to publicly give their approval or publicly disavow it.

1.	What have you done that you are proud of since your last review?
2.	What could you do to improve yourself?
3.	What were your goals in the last review?
4.	How well did you meet those goals?
5.	What will be your next goals for the next review?

287The Nature of the Beast

Note that none of the answers to the questions on the form would address the
process at all. The questions would all be inward-looking, looking at how the staff
view their own thoughts and feelings within the process and under the leadership.
The questions would not be outward looking, drawing attention to the external fac-
tors, the production process and the leadership. As such Appraisals offer nothing to
a natural leadership in a functional hierarchy. A natural leadership views software
production as a science and depends on Forward engineering. It promotes the higher-
level tools that Forward engineering depends on. The highest-level tool is natural
language. None of the previous questions address this or any other subjects pertinent
to natural leadership.

Even though effective natural language and communication are one of the
main goals of the Event-Database Production Process and the Event-Database
Architecture, the questions in a Performance Review or Self-Appraisal will not
address that.

The questions that are pertinent to natural leadership would be too profound to
be contained in an Appraisal Form. The answers would be too long for such a short
form. The focus of an Appraisal Form is the end product of a long process, not the
process itself. Trying to answer such profound questions in an Appraisal Form, by
giving a score to someone’s views or feelings about that process, would be futile. It
would be like trying to assess a long story by judging the moral of the story in the
epilogue. Ignoring the prologue and the rest of the story.

The moral of a story is didactic. And it is not a coincidence that an Appraisal Form is
sometimes read out by the leadership at the end of an Appraisal meeting like the moral
of a story from an epilogue. As has already been explained in the previous chapters, a
didactic form of communication is the preferred form of communication of an unnatu-
ral leadership and those who view software production as an art. And as a result, they
depend on Reverse engineering. Reverse engineering does not require a dialogue. So
they are not used to it. Instead, they prefer the more instructive language of didactic
literature. And that is what Appraisal Forms come out as, a form of didactic literature.

An introspective or retrospective examination of your views, thoughts or feelings
about some period in your life can be an opportunity to engage in moral philosophy.
That is to say it can be an opportunity to learn something new and to grow.

But it can only be moral philosophy if the object of that examination is to find
some objective truth about the world around you. It is not moral philosophy, how-
ever, if the object of that examination is to examine your views, thoughts or feelings
for their own sake. That is amoral philosophy. And that is the kind of examination
that occurs in Performance Reviews or Self-Appraisal Meetings.

What was the natural language of the production process?
What was being communicated within the production process?
What was the vision for the production process?
What were the successes or failures of the steps of the production

process?

288 Event-Database Architecture for Computer Games

4.3.2 E xplicit Approval in Performance Reviews or Appraisals

As has been explained in the previous chapters, in a dysfunctional hierarchy, there is
a marriage of convenience between the unnatural leadership and the staff. The lead-
ership gives nominal authority and autonomy to the staff to make strategic decisions,
to plan tasks and implement them. To practice the leadership vicariously through the
staff and not get entangled in the day-to-day problems. And in return the staff cover
up any problems or Bugs, Hacks and Placeholders in the software or the software
production process in order to maintain this nominally authority and autonomy. And
prevent the disasters that come from time to time with the leadership’s intervention.

Therefore, in these Performance Reviews or Self-Appraisals, the unnatural lead-
ership will be full of self-doubt due to the loss of perspective on the production
process. That in turn comes from the leadership withdrawing from the process and
conducting the leadership vicariously through the staff.

Some of the staff in turn will want to maintain their authority and autonomy.
So, in the Performance Reviews or Self-Appraisals, they will ignore the chaos,
and the problems caused by the recession away from higher-level tools, including
natural language, towards the lower-level tools that Reverse engineering depends
on. And that in turn the leadership explicitly or implicitly depends on because it
views software production as an art.

In answering the main questions on the Appraisal form, they will give no hint of
any problems. The list of achievements that the staff were proud off since the last
review would be long. And the list of improvements they could make would be short.
Almost all of the goals that were set in the last Performance Review or Appraisal
would have been met without any problems. And the goals for the next review will
be ambitious and make it seem that anything was possible in the project. And some
of the staff will explicitly praise the leadership or the project.

In return the unnatural leadership will reward these staff with a high-score in the
Appraisal meeting. Especially those who praise the leadership, show high productivity
and complete a large amount of tasks. By using an artistic ‘Prototyping’ method to per-
form all three phases (i.e. investigation of each task, estimation of the time to complete
the task and implementation of the task) in one continuous, open-ended phase.

In a functional hierarchy, with a natural leadership, neither the explicit approval
of the staff nor the scores in Self-Appraisal meetings have any value. As already
explained in the preceding subchapter, entitled Tacit Approval and Disavowal, a
natural leadership would not find in Performance Reviews or Self-Appraisal meet-
ings anything to address the kind of questions they would be interested in.

4.3.3  Self-Justification through the Benefits

In a dysfunctional hierarchy, those staff in the Performance Review or Self-Appraisals
who will cover up the problems in the software production process, including the
Event-Database Production Process, will justify themselves with whatever sub-
sidiary benefits the company offers. These include contractual benefits such as flex-
ible working hours, pensions, health insurance and paid holidays. These may even
include rudimentary benefits such as free food, drinks or air-conditioning. These

289The Nature of the Beast

also include other unofficial benefits such as financial security for any commitments,
especially a rent or a mortgage.

Other benefits would include the opportunity to play new computer games, with
these peers. As such, these would also include free passes to exhibitions, organised by
the industry, where several of these games would be demonstrated. And these would
include the opportunity to be the first to see, in public, any new technologies for build-
ing games, at these exhibitions. Furthermore, these would include free copies of games,
which the staff had worked on, which they received after the games had been released.
And these would include any credits the staff would receive for this work, either in the
games themselves or during the marketing of these products. So that the staff could use
this to market themselves when they seek new jobs. In this respect, the benefits would
also include the opportunity to have some of their marketable ideas added to a game
design. But, significantly, this would not include all of their ideas. Their most cherished
original ideas would be guarded jealously. And this in turn is no doubt partially if not
wholly related to the lack of original ideas in the games in the industry. There are many
staff with great ideas. But they dare not bring them out into an avaricious industry.

In the Computer Games industry, these benefits would include always being able
to dress casually. And these would include being able to listen to music and eat while
working at your desk in front of the computer. These would include the opportunity
to play computer games during lunchtime, or after work, with other staff.

But significantly, when they play these games at lunchtime or after work, they will
not play the unfinished games there were working on at the company. They will only
play games produced by other Software Developers. Since their experience with
developing that unfinished game, the production process, the Planning meetings, the
Appraisal meetings, the numerous crises, the arguments, the overtime, will have left
a bitter taste in their mouth. And they can see all the signs of these past and current
problems when they play the game, which a casual observer cannot see.

Also significantly when they play these games, they will not play with all of the
staff. But instead with a handful of the staff who were willing to bridge the gap that
naturally grews between all of them, under the unnatural leadership of a dysfunctional
hierarchy. As has already been explained, the unnatural leadership is in fact a vicari-
ous leadership or an absence of leadership. Into the void that is left by the leadership,
the staff compete to fill that void and manage themselves. The competition creates
acrimonious relationships which creates a gap between some of the staff. And the self-
management leads to some of the staff working in isolation for long periods.

In a functional hierarchy, the natural leadership is the bridge to that gap between
the staff. The leadership bridges that gap through natural language. As has already
been explained, the natural leadership views software production as a science and
relies on Forward engineering. And that means in turn it promotes the higher-level
tools that Forward engineering depends on. And natural language is the highest-
level tool. By promoting natural language between the staff, the leadership promotes
communication between the staff. And that naturally brings the staff closer together.
The cult of personality or popularity of the leadership, which the leadership enjoys
amongst the staff, also naturally brings the staff closer together.

Therefore, you can make another distinction between a natural leadership and
an unnatural leadership, by testing how close the staff are together when they play

290 Event-Database Architecture for Computer Games

games. Set apart a day during the week or hours during the day where the staff will
play games. This can be just another benefit on top of the other benefits they receive
from the Software Developer.

For this benefit, ask the staff to play a computer game, that involves teams of
players. Ideally that game should be the game that the staff were working on in
the production process, in this case the Event-Database Production Process. The
game should start in a non-competitive part of the Game World. And it should allow
the players to freely form their own teams in this location, before the competitive
part of the game begins. The game itself should not force them into teams. And the
leadership should not force them into teams. The teams can be of any size from one
player to over 100 players. And after the players have formed their teams, the teams
should be moved into the competitive part of the Game World.

In a functional hierarchy, with a natural leadership, the teams formed will be of
equal size, give or take one or two players. And assuming there were more than four
players, there should be no teams with just one player. In a dysfunctional hierarchy,
with an unnatural leadership, the teams formed will be disproportionate in size. And
there will be teams with just one player.

Now there is nothing wrong with company benefits. These may motivate the staff
to be more productive. But these only benefit the production process if the objective of
those benefits is for some greater good. Rather than having benefits for benefits sake.

4.3.4 E xplicit Disavowal in Performance Reviews or Appraisals

When some of the staff come up for a Performance Review or Self-Appraisal meet-
ing, in a dysfunctional hierarchy, they will dissent. They will reveal the problems,
Bugs, Hacks and Placeholders or errors in the software.

They will claim to have done nothing that they were proud of, or almost nothing.
They will object to the premise of the question,

That is to say, that the staff must be at fault for anything that has gone wrong. And
instead turn it around with the question,

They will deny having met any of the goals that were set in the last review, or
almost none.

And their next set of goals for the next review will be the same as for the current
review, more or less.

The unnatural leadership will react to this dissent by coercing, or attempting to
coerce, the staff to feel guilty. Either the leadership will use the inevitable mistakes

What can you do to improve yourself?

What can the production process or the leadership do to improve itself?

291The Nature of the Beast

and problems the staff will stumble over, that naturally arise in the unnatural leader-
ship. Or the leadership will try to get the follower to incriminate him or herself.

For example, as already previously mentioned, one of the traits of an unnatural
leadership is that it views software production as an art. And it makes lots of ad hoc
decisions in the process. Another trait is that the unnatural leadership is a vicarious
leadership. The leadership uses the staff vicariously to conduct its role. The leader-
ship gives the staff nominal autonomy and authority to perform tasks. But later on
undermines that autonomy and authority. By overriding the staffs’ decisions arbi-
trarily on an ad hoc basis.

So suppose the staff decided to use some tool to perform a task. Suppose a Game
Artist decided to use a third party computer-aided design (or CAD) tool to create
a 3D model of a character and animate it. Or a Game Programmer decided that
they would use some programming language to create a tool to test the process of
building the game. After they had made the decision, the leadership comes along
and decides that the software licence for the third party CAD tool is too expensive.
So the Game Artist should use another tool to complete that task. And the leader-
ship decides that the programming language that the Game Programmer wants to
use is not approved by the company. It is not the tool which is used elsewhere in the
company for other projects. So the Programmer should use another tool which was
approved by the company.

After changing the tools that the Game Artist and the Game Programmer used,
the tasks ends up taking longer than either of them had scheduled for. And the Game
Artist and Game Programmer brings this up in the Performance Review or Self-
Appraisal. They point out the adverse effect on their schedules caused by the lead-
ership’s decision to overrule them. Instead of being concerned with any damage
that may have been caused, by the decision to overrule, the leadership will be more
preoccupied with cultivating the empathy of the staff. Aware that the staff has the
intelligence (i.e. sensibilities) to look beyond the confines of their role, the leadership
will insult those sensibilities. The leader will suggest that it was a lack of empathy,
on the staff’s behalf, for the leaderships’ problems, to observe these adverse effects.

The narcissism will not stop there. It will go even further if the leadership feels
its credibility would be damaged by, for example, having to include the oversight in
a report, like the Appraisal form in a Performance Review or Self-Appraisal meet-
ing. The leadership would hold the staff responsible for the leadership’s ignorance.
The staff’s own observation about the consequences of the leadership’s decision to
overrule them, in this case forcing the Game Artist or Game Programmer to use one
tool instead of another, would be used to incriminate them. This observation would
be presented, in the Appraisal form, as a confession, as evidence of the staffs’ lack
of communication. The staffs’ reputation would as a result suffer, and they would be
punished for their honesty. Despite the fact that the leadership would have invited
the staff, to be honest about the workplace, at the start of the Performance Review
or Self-Appraisal meeting.

Bear in mind, before the meeting, the leadership would have gone out of the way,
to marginalise itself from the day-to-day problems in the workplace. The leadership
would have delegated responsibility to the staff. The leadership would have let the
staff come up with the plans to accomplish long-term goals, to break down those

292 Event-Database Architecture for Computer Games

plans into smaller tasks, to come up with the schedules for these smaller tasks. The
staff would have assigned some of these smaller tasks to other members of staff, over
whom they had no real authority or control. The leadership would have come in and
revised these plans on an ad hoc basis. Leaving the staff to face the consequences.
The leader would have delegated help to others, when the staff presented subsequent
problems. Yet despite all this effort, on the leadership’s behalf, to extricate himself or
herself from the problems, the staff would be held accountable, for underestimating
the depths of the leadership’s ignorance.

When the staff who dissent, do not get the message from the Performance
Reviews or Self-Appraisals meetings, the leadership will merely double down with
more meetings. Normally these meetings should take place either once a year, or
every half a year i.e. six months, or every quarter i.e. three months. But in a dys-
functional hierarchy, the unnatural leadership will reduce this down to even shorter
intervals e.g. every two weeks. And these more frequent reviews will be done with-
out all of the formality of a normal Review or Appraisal meetings, with all the forms
they would normally fill in. And these will not be even called ‘Reviews’ but some-
thing more informal or Orwellian, like ‘Catch-up’ meetings. Nevertheless, content
of those informal meetings will be the same as the formal ones.

Again, in a functional hierarchy, with a natural leadership, neither the explicit
disavowal of the Event-Database Production Process, by the staff, in Performance
Review or Self-Appraisal meetings nor the frequency of the meetings would have
any value. As already explained in the preceding subchapter, entitled

Tacit Approval and Disavowal,

a natural leadership would not find in Performance Reviews or Self-Appraisal meet-
ings anything to address the kind of questions it would be interested in.

4.3.5  Self Incrimination in Self-Appraisals

As explained in the previous chapter, entitled

The Time of the Beast,

self-incrimination characterises an unnatural leadership in a dysfunctional hierarchy.
Self-incriminating evidence is the only form of evidence that comes out of a dysfunc-
tional hierarchy. The staff whom the leadership nominally delegates responsibility
to achieve long-term goals end up incriminate themselves with what they produce.
With their plans to achieve those goals, the breakdown of plans into tasks, sched-
ules for the tasks that they come up with to achieve those goals all end up as self-
incriminating evidence in the Self-Appraisal meetings. When the leadership meets
the client or financial backers of a project, they end up incriminating themselves with
what they produce. The long list of features in the game design they use to sell the
project between each milestone, all end up as self-incriminating evidence at the end
of the milestone or in the Post-mortem meetings. And with this self-incrimination
there will be an ever pervasive air of guilt.

293The Nature of the Beast

Some of the staff will falsely believe that, by actually meeting the leadership’s
expectations, they will be able to escape the feelings of guilt. But even when they
do meet or exceed the leadership’s expectations, the leadership may still make them
feel guilty if they exhibit any signs of dissent, during a Performance Review or Self-
Appraisal meeting.

For example, suppose the leadership gives the staff, a Game Programmer, the task
of creating two tools, an Automated Build System and an Automated Testing System.
To automatically build the game, based on the Event-Database Architecture, at the
end of each day. And run the game through an automated test. And produce a report
indicating the success or failure of that test. And send the report in an e-mail to a
set of Software Users which the leadership could specify in the parameters of the
Automated Testing System.

Now suppose that these two Systems would normally take six months to build.
But the Programmer did it in two months using a particular tool which they found
on the Internet, which they were proficient in. However, after the first iteration of the
two Systems were built, and reviewed by the leadership, the leadership rejects the
two Systems. The leadership complains that the tool used to build the Systems was
not what they expected. Even though the leadership did not specify any tool to be
used when the task was given.

Instead the leadership asks for the two Systems to be rebuilt again using another
tool which it considered was part of the company’s ‘ecosystem’. That is to say, the
Systems had to be built with a tool from a limited set of approved third party tools.
That met the company’s corporate strategy to work in partnership with these third
parties. Such as the tools approved by the Software Developers of the commercial
game-engine that the company happened to be using.

Now suppose in the meeting that the leadership asked for the Systems to be
rebuilt, the Programmer dissents. And the Programmer tries to defend the decision
to build the original two Systems using the tool found on the Internet. Claiming that
this was a faster process than using the tool which was part of the corporate ‘ecosys-
tem’. And the Programmer questions the decision to use the tool which was part of
the corporate ‘ecosystem’. Nonetheless, at the end of the meeting, the Programmer
agrees to use the new corporately approved tool. And rebuilds the two Systems again
taking another four months.

When that Programmer comes up in a Performance Review or Self-Appraisal
meeting, all of the accomplishments of the original two Systems built in two months,
ahead of leadership’s expectations will be forgotten. Even though this exceeded the
leadership’s expectations which was six months. Instead the leadership will accuse
the Programmer of wasting time by using tools which were not part of the approved
corporate ‘ecosystem’. The Programmer will be accused of lack of communica-
tion and beginning tasks without asking questions. While at the same time the
Programmer will also be accused of asking too many questions. For questioning the
decision to replace the old tool used to build the two Systems with the new corpo-
rately approved tool.

By having attempted to complete a task in a shorter time than the leadership
expected, and admitting to using a tool found on the Internet to do so, without con-
sulting the leadership, in the vain hope that the leader would be pleased, that staff

294 Event-Database Architecture for Computer Games

would have fallen into a trap. The staff would have provided the leadership with what
it construes as a confession, evidence that would only be used, to incriminate them in
a Performance Review or Self-Appraisal meeting, when they dissent.

This is a reoccurring theme in a dysfunctional hierarchy, under an unnatural lead-
ership. There are many problems, Bugs, errors, poor language, poor communication
and vague tasks. But most of it is suppressed because of the marriage of convenience
between the leadership and the staff, as explained in the previous chapter entitled

The Marriage of the Beast.

As time goes by, the seething mass of problems slowly trickles up to the surface.
And there are staff who stumble across them but keep this to themselves. Even when
the leadership asks for the staff to be honest, for example in a Performance Review
or Self-Appraisal meeting, they will remain silent. But from time to time some of
the staff will share intimacy with the leadership, about the problems they have come
across. And the leadership will use this intimacy against them, as self-incriminating
confession and evidence, when the staff dissent.

Again, in a functional hierarchy, with a natural leadership, neither confessions or
self-incrimination in a Performance Review or Self-Appraisal meeting or elsewhere
would have any value. As already explained in the preceding subchapter, entitled

Tacit Approval and Disavowal,

a natural leadership would not find in Performance Reviews or Self-Appraisal meet-
ings anything to address the kind of questions it would be interested in.

4.3.6 T he Right to Silence

You would have to go back hundreds of years to find well documented public
cases of where confessions or self-incrimination of the kind seen in dysfunc-
tional hierarchies was used. In the English courts of the Star Chamber and the
High Commission, those who were accused were bound to answer questions of
their interrogators or be tortured. Even if they might incriminate themselves.
This practice was widely hated, because it was believed to be used primarily for
squashing religious dissent. So these courts were abolished and soon afterwards
the right to silence10 was established.

Back then, you were required by law to attend church on Sunday and join in the
service to worship God. And the government dictated the content of that service and
what form that worship would take. If you criticised the government’s conduct in
this, or other religious matters, then you could be brought before the courts of the
Star Chamber or High Commission. Where your interrogators had the power, by law,
to torture you for failing to answer self-incriminating questions. In the Performance
Reviews or Self-Appraisal meetings, the technique is more subtle.

The staff who dissent under an unnatural leadership are brought before the Self-
Appraisal meetings. Like religious dissenters brought before the court of the Star
Chamber. They are bound to answer self-incriminating questions or be tortured. The
premise of these questions is that there is nothing wrong with the leadership, nor the

295The Nature of the Beast

production process. And that the only case to be answered for is the performance of
the staff in that process.

The leadership will use vague complaints from anonymous sources, and false con-
cern, in an attempt to get the staff to reveal or confess to something incriminating.

The staff are bound to answer questions of their interrogators. Even if they might
incriminate themselves, by revealing the problems under the leadership. Or else face
the torture of having to deal with the seething mass of problems that arise under
the leadership and holding these down. Even though these problems naturally keep
trickling up to the surface.

In light of which it is perhaps time, with respect to how Performance Reviews or
Self-Appraisal meetings are conducted, for the temple of commerce to catch up with
the temple of God. And a new right to silence should be established for the new Star
Chamber. That is to say, the staff subject to a Performance Review or Self-Appraisal
meeting should have the right to silence. They should not be required to say anything
or answer any questions in their defence in these meetings. And that should not be
taken as a sign of their guilt. The burden of proof should be on the prosecution bring-
ing any complaints or accusations against the staff. No accusation should be enter-
tained unless it is corroborated by two or more witnesses. No hearsay or anonymous
sources should be admissible. By default, the staff’s performance rating should be
excellent. And in the absence of any corroborated evidence being presented in the
meeting that it should be anything less, that should be final outcome of the meeting.

Again, in a functional hierarchy, as already explained in the preceding subchap-
ter, entitled

Tacit Approval and Disavowal,

a natural leadership would not find in Performance Reviews or Self-Appraisal meet-
ings anything to address the kind of questions it would be interested in.

‘The team is concerned that when you do tasks and it comes up for
review, it is not quite what was expected. And a lot of work has to be
done to correct it, that wastes time. It seems as though you don’t ask
questions when you are given task, to clarify what is expected.

But on other occasions, the team also feels that you ask too many ques-
tions. And you don’t make an attempt to work things out for yourself.
You don’t seem to exercise the right judgement in deciding when to
ask and when not to ask questions.

What do you have to say for yourself?’

What was the natural language of the production process?
What was being communicated within the production process?
What was the vision for the production process?
What were the successes or failures of the steps of the production process?

296 Event-Database Architecture for Computer Games

None of these are self-incriminating questions. None of the answers to these questions
can be taken as a confession. These are questions about the process, the Event-Database
Production Process: not the staff. Therefore, a natural leadership has no interest in self-
incriminating questions or confessions, let alone punishing those who dissent.

4.3.7 H uman Resource and Human Beings

In Performance Reviews or Self-Appraisal meetings, in a dysfunctional hierarchy, it
would be no use for the staff to appeal to some authoritative body, in the organisa-
tion, for arbitration; such as the Human Resources.11 In theory, this body will claim
to be available to impartially settle disputes between the leadership and the staff.
But, in practice, this body will merely be an extension of the unnatural leadership.
This body, more than any other part of the organisation, would share a deep intimacy
with the leadership.

Especially in the Computer Games industry, this intimacy develops from the high
turnover of the staff that occurs underneath an unnatural leadership. That in turn
requires the Human Resources to hire more staff, typically undergraduate interns or
recent graduates eager to work in the industry. To replace those who have left for one
reason or another. Without this intimate relationship, the unnatural leadership would
simply run out of staff. Who are treated as chattel, resources, commodities for the
leadership to consume, instead of human beings.

Another thing that binds the two together is that Human Resources and many of
the unnatural leadership come from the same academic background, the same aca-
demic courses mentioned previously in the chapter

The Nature of the Beast.

That claim to teach its graduates to become leaders. But in fact merely train them to
become vicarious leaders, who reduce leadership down to delegation of responsibil-
ity and enforcement.

So Human Resources will just be another means by which the unnatural lead-
ership will vicariously gather any self-incriminating evidence or confessions,
against any staff who dissent. Any intimate details about the hierarchy, which the
staff involved in the Event-Database Production Process revealed to Human
Resources, would be passed on to the leadership. And the leadership would use
this as a confession, to incriminate the staff who dissent; typically in some form
of an ambush meeting.

Again, in a functional hierarchy, as already explained in the preceding subchap-
ter, entitled

Tacit Approval and Disavowal,

a natural leadership would not find in Performance Reviews or Self-Appraisal meet-
ings anything to address the kind of questions it would be interested in. Therefore, it
would not use these meetings to assess staff. And the staff would not need to appeal
to some independent arbiter like Human Resources.

297The Nature of the Beast

4.3.8 U nions and Performance Reviews or Appraisals

In the previous chapter, a right to silence for the staff was suggested as one way
for improving Performance Reviews or Self-Appraisal meetings. Other critics have
suggested a more democratic model for doing business as another way to improve
these meetings. An organisation where all the members, of a team, were held jointly
accountable for the performance of any individual in that team, would conduct these
Self-Appraisal meetings differently.

Any meeting would require either that all the members of the team be present. Or
that a representative from the same team as the staff under review be in attendance.
And any accusation or complaint against any one in that team should be treated as
an accusation or complaint against the whole team. And any punishment or sanction
against any one in that team should be treated as a punishment or sanction against
the whole team. This is the approach of trade unions to industrial disputes with
employers, including Performance Reviews or Self-Appraisal meetings.

That is to say, the trade unions recommend bringing a colleague with you to any
Self-Appraisal meeting. To be a witness to what is said and done in the meeting. And
for that colleague to weigh up any accusation or complaint against you, with their
experience under the same leadership. And to weigh up any punishment or sanction
against you with their experience under the same leadership. Some employers will
not allow any accompanying colleague to speak in these meetings. But they will not
deny any request you make to be accompanied, since this will be frowned upon if
you take your case to an Employment Tribunal.

If the leadership is willing to hear that colleague at that meeting, then that col-
league can defend you against complaints with their experience. Or defend you
against any punishment or sanction with their experience of similar disciplinary
action under the leadership.

And if the leadership were not willing to hear that colleague in the meeting, then
you can take your case to an Employment Tribunal. Where that colleague can testify
on your behalf when that Employment Tribunal hears your case. And where you can
get financial support from your trade union for any solicitors or advocates who pres-
ent your case before the Employment Tribunal.

Unfortunately, in the Computer Games industry for a very long time, there have
been no trade unions. All attempts to create trade unions in the industry had failed.
But recently a new union IWGB Game Workers12 has been established which work-
ers from the industry can join.

4.3.9 N atural Leadership: A Manager of Processes

As has been said in the previous chapters, a natural leadership in a functional hierar-
chy would find nothing of value in a Performance Review or Self-Appraisal meeting.
Since it does not address the kind of questions that the leadership would be inter-
ested. As already explained in the preceding subchapter, entitled Tacit Approval
and Disavowal, these are questions about the process, in this case the Event-
Database Production Process. Whereas Performance Reviews or Self-Appraisals
focus on questions about the staff in that process.

298 Event-Database Architecture for Computer Games

More precisely, some critics claim that the Performance Reviews or Self-Appraisal
meetings look at the end product of a process or system that produces the staff and
their work. It does not look at the process or system itself. It acts as a form of Quality
Control that accepts or rejects a product at the end of a production process. That is all
Quality Control can do, accept or reject a product. It does not actually improve the
Quality of the product. It tells you nothing about the process or system which pro-
duced it. Likewise Performance Reviews or Self-Appraisals can only accept or reject
the staff and their work produced by some process or system. It cannot improve the
staff, the Quality of the work or the process. And it tells you nothing about the pro-
cess or system which produced them.

To improve the Quality of a product of a process or a system you must have Quality
Assurance13: not Quality Control. Quality Assurance is systems in place which allow
you to scrutinise the steps of a production process or system. To identify when errors
enter the steps of a process or system at any point. To decide whether or not the error
was due to a flaw in that process or system. And if it were, to fix that step in that process
or system. And if it were due to staff to train them to perform that step.

Training should be available for every step in that process or system and should
therefore be institutionalised.

This would suggests that a natural leadership which views software production as
a science and relies on Forward engineering in software production, would be ide-
ally suited. Since, as explained in previous chapters, a natural leadership promotes
the higher-level tools that Forward engineering relies on. And the highest-level tool
is natural language. A natural language helps institutionalise training the staff in the
steps of the production process, the Event-Database Production Process. And a
natural leadership promotes a scientific ‘Research’ method to investigate new tasks,
estimate how long the tasks would take and implement those tasks. This form of
investigation is repeatable and helps institutionalise training the staff to use it. And
that in turn helps improve the skill of the staff. And that in turn enables a natural
leadership to improve the production process and the Quality of its product.

But in the Computer Games industry training is typically not institutionalised.
Employees are typically expected to already know their roles from prior experience
elsewhere in the industry. Or to work on a portfolio in their spare time which shows
that they have already had the necessary experience. And so require no training for
whatever role they are placed into in the production process. Performance Reviews
or Self-Appraisals are used as a form of Quality Control to ensure the Quality of
the final product. But as has already been said, Quality Control cannot improve the
Quality of any product or the staff. It can only accept or reject a product.

For this and other reasons, many critics of Performance Reviews or Self-Appraisals
view them as a substitute for leadership.14 And that these should be abolished.

One of the other reasons critics suggests that Performance Reviews or Self-
Appraisals should be abolished, is that they are often connected to disciplinary
action. When staff get a low score in a Performance Review or Self-Appraisal, they
are moved on to a disciplinary process where they are continuously monitored to see
whether their behaviour improves. To see for example, if the outcome of the Self-
Appraisal is that they do not ask questions to clarify tasks before they begin, that
they do ask questions when they are given new tasks. Or if the outcome was that they

299The Nature of the Beast

ask too many questions when given tasks, that they do not ask too many questions.
Or if they were told not to use some tool to perform some task, and only use tools
sanctioned by the company, that they did only used sanctioned tools. Or if they did
not follow the company’s Naming convention for writing code or naming files, that
they do follow that convention when they generate the next piece of code or name
new files.

And if the staff fail this test, they are then given a first written warning. And if
they fail again, they are then given a second written warning. And if they fail again,
then they are dismissed.

For this reason Arbitration services15 that give advice about how to conduct
reviews agree with the critics to an extent. Although they do not suggest abolition,
they do suggest that disciplinary process and disciplinary action should be kept
strictly separate from the review process.

4.3.10 U nnatural Leadership: A Manager of Defects

In a dysfunctional hierarchy, an unnatural leadership, however, would find
Performance Reviews or Self-Appraisals valuable. As explained in the previous
chapters, an unnatural leadership is a vicarious leadership. The leadership conducts
itself through an army of delegates it gives nominal autonomy and authority to per-
form its function. For this reason, the focus of the leadership is on the delegates. That
is to say the staff through whom the leadership acts vicariously.

As a result Performance Reviews and Self-Appraisals of the staff is an invaluable
tool to detect problems with the production process, in this case the Event-Database
Production Process. But, as has already been explained in the previous chapter,
critics say this is merely a form of Quality Control that detects errors or defects in
products at the end of a process or system. In this case, the product is the staff and
their work.

This Quality Control does not examine the process or the system. It can only
accept or reject the product at the end of the process. It cannot improve the process,
the Quality of the product, the staff or the work they produce. All the unnatural
leadership can do is respond to these errors or defects that the Performance Reviews
or Self-Appraisals reveal. As explained in the previous chapter, this is a substitute
for leadership. That makes the unnatural leadership not a manager of staff, nor a
manager of processes, but a manager of defects.

When an unnatural leadership gives a low score in a Performance Review or
Self-Appraisal meeting to some of the staff, and then proceeds to move them on to a
disciplinary process as a result, this will not improve the staff. This will merely end
up either, at best, making the staff struggle just to give the appearance of passing
whatever test was set before them in the disciplinary process. Although they cannot
sustain this appearance for long. Or at worst, this will end up alienating, isolat-
ing and ultimately rejecting the staff. Thereby undermining the whole process, and
encouraging other staff to suppress errors or defects in the production process, in
Performance Reviews.

In the Computer Games industry, many like to claim they offer training to staff.
And thereby imply that they improve their skills and the production process. But the

300 Event-Database Architecture for Computer Games

training they offer is only on the job training, which is no training at all. The staff are
thrown into the deep end and expected to either sink or swim. There are senior staff
members around, with experience, such as Team Leaders, who in theory you can
ask questions. But in practice they are normally too busy dealing with the problems
caused by the unnatural leadership that they have not got the time to help.

Furthermore, when they do have time, they will be of little use. These senior staff
will be part of the unnatural leadership. As a result they view software production as
an art and rely on Reverse engineering in software production as well. And they will
promote the lower-level tools that Reverse engineering relies on. They will expect
junior staff to use these lower-level tools to learn by themselves. And to use an artis-
tic ‘Prototyping’ method to investigate new tasks. Although as explained already in
the previous chapter entitled

The Time of the Beast.

This method is not repeatable and therefore counter-intuitive to any teaching process.

NOTES
	 1.	 Event-Database Architecture Knowledge Test. A multiple choice test where each

question asks you to select the meaning of names of Events, Actions, Game Objects,
Database Tables, Records and Fields in the Game Database of the Event-Database
Architecture. Where the correct answers come from the definitions of these items in
the data design.

	 2.	 Good memory (to a leader). A good memory helps a leader love the work and stops him
or her hating it, through the frustration of repeated mistakes. This gave rise to the idea
of a philosopher-king in antiquity.

	 3.	 Academic course (about leadership). There are several post-graduate courses avail-
able which claim to teach students how to become business leaders. The influences of
these courses are very wide ranging. But these courses have been oversold and produce
false leaders.

	 4.	 Post-mortem meeting. A meeting conducted at the end of a software production pro-
cess, by the staff involved, to examine the pros and cons and the lessons to be learnt
from the experience.

	 5.	 Third Party Game Testers. A company (e.g. Universal Speaking Ltd.) that specialises
in performing the function of the QA Department in the Computer Games Industry
including testing the game at the end of the production process.

	 6.	 Narcissism. An excessive love or pre-occupation with yourself, which leads to a decay
in your ability to empathize with others.

	 7.	 Prevalence of women. A recent research into the characteristics of the workplace, in
high-technology industries, found that the macho, competitive atmosphere was a bar-
rier to women.

	 8.	 Event-Database Architecture Productivity Formula. A formula for measuring the
productivity of any software production process by inverting amount of waste pro-
duced. See the subchapter entitled Cause and Effect.

	 9.	 The nature of the beast. A figure of speech which means a regrettable but inescapable
characteristic.

	 10.	 Right to silence. In English law, and in other countries, a person charged with a crime
has the right to remain silent before and during trial in order to avoid saying anything
incriminating. This is the basis of placing the burden of proof on the prosecution. See
Glossary.

301The Nature of the Beast

	 11.	 Human Resources. A department of an organisation responsible for the recruitment,
payment and personal welfare of staff.

	 12.	 IWGB Game Workers. A trade union established in 2019 for workers in the Computers
Game industry. It deals with many common issues in the industry such as overtime,
sexism and harassment. See Glossary.

	 13.	 Quality Assurance. In theory, a system which ensures that a company’s processes (as
supposed to their product) will meet all of the customer’s requirement and specifica-
tions. In practice, software companies just apply two Quality Controls in the latter
stages of production, known as Alpha and Beta testing, and call it Quality Assurance or
QA. See Glossary.

	 14.	 Substitute for leadership. In his 14 points for manufacturing quality goods, W. Edwards
Deming suggested that the use of annual appraisals, to measure and improve the per-
formance of an employee, were in effect a substitute for leadership. See Glossary.

	 15.	 Arbitration service. A charity or a commercial company that mediates between two
sides involved in an industrial or employment dispute. See Glossary.

302 DOI: 10.1201/9781003502807-5

5 Cause and Effect

The success or failure of a software production process, such as the Software
Evolution Process or Event-Database Production Process, is an effect. And the
cause of that effect is the productivity of the staff. If the productivity were high and
the waste were low, then greater would be the likelihood of success. If the productiv-
ity were low and the waste were high, then greater would be the likelihood of failure.

But what is productivity and waste? How do you measure productivity and waste?
To answer this question you need some definition of productivity or waste. You

need some standard to compare against the productivity or waste of the Software
Evolution Process or the Event-Database Production Process. That is to say, you
need some standard production process you can use to measure other process and
give a definition of productivity or waste..

Unfortunately there is no standard definition of productivity or waste. And that
in turn is because there is no standard software production process in the Software
industry, including the Computer Games industry. And indeed there has been no
agreement about the role of design in the Software industry and Computer Games
industry. Outside of academic circles, where it would be otherwise impractical to
assess work, there is no requirement for designs in software production. In fact,
there is no standard practice for Software engineering. There are no Trade Unions
that might attempt to define the role of a Software Engineer. There are standard bod-
ies, such as the Institute of Electrical and Electronics Engineers or IEEE. But these
are not as influential as their medical counterparts. These bodies do not require any
ethical responsibility for other people: there is no oath to do no harm. Instead, the
standard bodies mainly set technical standards.

Though they do have standards for practising Software engineering, these have
been widely ignored in the marketplace with notable exceptions. These exceptions
are, namely, government contracts, especially military contracts,1 where these stan-
dards are used to lethal effect. For this lack of widely recognised ethics, standard
practices and other reasons, national judiciaries have refused to recognise Software
engineering as a profession.2 And perhaps the Event-Database Architecture, and
the accompanying Event-Database Production Process, will establish recognised
ethics and standard practices at least for the Computer Games industry for the first
time.

For some, the very fact that a software project had no detailed records about its
production process would be evidence at least of the lack of leadership. Without
such records, the leadership could not remember any mistakes that were made. The
leadership would not be able to account for how long certain tasks took and how suc-
cessful these were. Thus, they would not be able to assess the risk of any decisions
they repeated in that project or would repeat in future projects.

Nevertheless, for some the fact that a software production process had not pro-
duced any useful relics or records, except the final product, would not be evidence

https://doi.org/10.1201/9781003502807-5

303Cause and Effect

of a lack of leadership. Nor would it be evidence of the absence of a production pro-
cess and any ill effects this would allegedly cause. Indeed, for them, such an infor-
mal approach to software production would actually constitute a style of leadership;
rather than the absence of leadership.3

So how can you test both claims? That the absence of useful relics or records from
a software production process, such as the Software Evolution Process or the Event-
Database Production Process, is an absence of leadership and low productivity?
And those who claim that it is not an absence of leadership and low productivity?
And conversely, how can you test the claim that the presence of useful relics or
records that allow you to scrutinise the software production process is a sign of the
presence of leadership and high productivity?

Whatever the test may be, an important part of this test would be the accuracy
of the measurements of productivity. For these measurements to be accurate the
method must be sensitive only to work which contributes to the final product. That
is to say, it must ignore waste.

It follows, from this requirement, that the measurement of productivity has to be
inversely proportional to the waste a project produces. So one possible formula for
measuring productivity would be simply to calculate how much waste was produced
and invert it.

In the Software Evolution Process or Event-Database Production Process, the
waste produced would be proportional to ten factors.

The first factor would be how many different software components were used to
build the final product. The software components would include the software data,
software modules and software libraries.

The second factor would be the number of components in the User Interface of
the final and intermediate products. The components of the User Interface would
include the various interactive menus or locations in the Game World.

This would include any icons, buttons, 2D images, 3D models, words or other
items on the Interface, through which commands could be issued or responses
received, either on a menu or in a location of the Game World. This would include
any sounds or music which could be heard. This would also include any animated
icons, buttons, images, models, words or static screens with which the software user
could not interact. And this would include any messages which were there simply for
the purpose of debugging the product. Although the software user may not see these
messages, the staff would. And the more of these there were, the more time the staff
would waste introducing, understanding and negotiating these components.

The third factor would be how many different software components were used to
build the custom tools, used to build the final product.

The fourth factor would be the number of components in the User Interface of
these tools.

The fifth factor would be how many times the designs were modified, of all of
these components, in the final product and the custom tools.

The sixth factor would be the number of upgrades, of the software components,
that were performed in the intermediate and final product.

The seventh factor would be how many times the components of the User Interface
of the intermediate and final product were updated.

304 Event-Database Architecture for Computer Games

This includes how many times any of these software components or User Interface
components were physically rebuilt, on all the computer hardware the staff use. It
should not only take into account the number of times these were rebuilt, on special
computers reserved for building the latest version of the game, sometimes called
‘Build Machines’. Nor should it only take into account the number of times these
were rebuilt by a special member of staff whose role it is to build the latest version,
sometimes called a ‘Build Engineer’.

Instead, it should take into account the number of times any of these compo-
nents were rebuilt by any member of staff. The greater the number of these upgrades
that occurred, during a project, then the more waste the staff would have produced.
Either there would have been a greater number of staff working on different versions
of the game, at the same time. Or there would have been a greater number of staff
uncertain about the latest version of the game. And hence, they would produce more
waste because of this disparity or uncertainty.

The eighth and ninth factors would be almost exactly the same as the sixth and sev-
enth. The only difference would be that these would relate to the custom tools. That
is, the eighth would be a total of how many upgrades were performed on the software
components, used to build the custom tools. And the ninth would be a total of how many
upgrades were performed of the components of the User Interface, of these tools.

The tenth factor would also be related to upgrades. But not so much to the
upgrades of components as to the upgrade of entire tools. Namely, this would be the
number of upgrades of the third-party tools including the game-engine, that were
used during the project. The greater this number, the more software components that
were already built with these tools would have to be rebuilt. Or more time would
have been wasted performing these unnecessary upgrades and getting accustomed
to the changes in the latest versions.

However, the waste produced in a project would be inversely proportional to six
factors.

The first factor would be the number of records of the different software compo-
nents, used to build the final product, that were kept.

The second factor would be the number of records kept about the different com-
ponents of its User Interface.

The third and fourth factors would be the same as the first and second but relate
to the custom tools used to build the final product.

And the fifth factor would be the number of records kept, of the modification of
all these components.

The relationship of these records, to the waste produced in a project is this. When
a project lacks a record of the design of its software components or its User Interface,
then more waste has to be produced as a result. Each time someone wants to modify
the design, he or she has to informally document it first. So, at the end of the project,
the less formal records kept about the design of its software components or User
Interface, the more informal documentation has to be produced to modify those
software components or User Interface.

The final factor that would be inversely proportional to the waste produced would
be the number of records kept about the upgrades that were performed. That is to
say, the fewer records kept about the number of upgrades, of any of the software

305Cause and Effect

components, the components of the User Interface, the custom tools or third-party
tools, that were performed by the staff, the more waste would be produced. Since
either some members of staff would make wrong assumptions about the version of
the final product, custom tools or third-party tools, which others had. Or they would
keep insisting that other staff waste time rebuilding or acquiring the latest version of
the product, custom tools or third-party tools. So that they could, for example, accu-
rately report a Bug. Even though the other staff may already have the latest version
of the latest relevant components. In the Computer Games industry, the time it would
take to rebuild the latest version of the software would not be negligible. It could be
anywhere from 30 minutes to 14 hours on a large project.

Formulas for measuring the waste and the productivity of a project are shown in
Figures 5.1 and 5.2.

With these two formulas, you can test the claim that the absence of useful rel-
ics or records that allow you to scrutinise a software production process, such as
the Software Evolution Process or the Event-Database Production Process, is an
absence of leadership and a sign of low productivity. And you can test the counter-
claim, that the absence of these records is not an absence of leadership or a sign of
low productivity but just another style of leadership. By letting a production pro-
cess begin, with no requirement to keep records, and suspending it after a suitable
period, for example three months. At this point you gather the parameters required
by the formulas and use these to calculate the values for productivity and waste
(see Figures 5.3 and 5.4).

After that, you resume the production process again but with a requirement that it
keeps records that allow you to scrutinise it, and suspend it again, after three months.
Again you gather the parameters and calculate the values from the two formulas a
second time

If the claims that the absence of useful relics or records in the production pro-
cess were not a sign of an absence of leadership were correct, then the values for
productivity will be the same or fall, from the first three months to the second
three months. If the claims that the absence of records that allow you to scrutinise
the production process were a sign of an absence of leadership and low productiv-
ity, then the values for productivity will rise, from the first three months to the
second three months.

This test will not only show the effect of changing from an Event-Database
Production Process with no requirement to keep records, to one with a requirement

FIGURE 5.1  Formula for calculating waste in a software production process.

FIGURE 5.2  Formula for calculating productivity in a software production process.

306 Event-Database Architecture for Computer Games

to keep records. But it will also show the effect of changing from a Software
Evolution Process to an Event-Database Production Process. All you have to do is
use the Software Evolution Process for three months, stop and measure productivity
and waste using the two formulas. And then use the Event-Database Production
Process for the next three months, stop and measure productivity and waste again.
The values calculated for productivity should rise, from the first three months to
the second three months. If the claim that Event-Database Production Process
improves the communication amongst the staff and hence their productivity, when
compared with a Software Evolution Process, were true.

FIGURE 5.3  First half of the parameters for calculating waste and productivity in a soft-
ware production process.

FIGURE 5.4  Second half of the parameters for calculating waste and productivity in a
software production process.

307Cause and Effect

NOTES
	 1.	 Military contracts. Software Developers of components used in military applications

have traditionally been required to follow a recognised standard, for software engineer-
ing, in order to get the contract. See Glossary.

	 2.	 Software engineering as a profession. Since software service providers do not claim to
be members of a profession they cannot be legally sued for malpractice. See Glossary.

	 3.	 Absence of leadership. This is not the complete lack of leadership per se, but the man-
agement of software production through vicarious leadership or macromanagement.
See Glossary.

308 DOI: 10.1201/9781003502807-6

6 Glossary

LPmud

Lars Pensjö’s Multi-User Dungeon (MUD). Any of a large class of multi-user adven-
ture games built using the software architecture created by Lars Pensjö.

LPmuds are a subclass of games called MUDs played on the Internet. The first
MUD was created by Roy Trubshaw and Richard Bartle, in 1979 at Essex University
in England. The first LPmud was a direct descendant of two other subclasses of
MUDs. The first was AberMUD, created by Alan Cox in 1987 at Aberystwyth
University in Wales. The second was TinyMUD, created by James Aspnes in 1989 at
Carnegie Mellon University in the United States of America.

Having played these two MUDs, Lars Pensjö at Linköping University in Sweden
decided to create his own MUD combining one major aspect from each game. The
first aspect was the spirit of exploration and adventure of AberMUD. The second was
the spirit of collaboration between players to create their own world, in TinyMUD.
He created a programming language, called Lars Pensjö’s C or LPC, to make the lat-
ter aspect possible. And this language was used to create a world of medieval fantasy
and adventure. The original LPmud subsequently became known as Genesis. It was
opened on the Internet around 1989, at Chalmers Computer Society in Sweden.

The computer files used to build the game were soon afterwards released on
the Internet. And these were used to make hundreds of games. The licence that
accompanies the files allows you to copy the game and modify it to create your
own using those files. But neither the files, nor the game may be used for com-
mercial purposes.

Nevertheless this non-commercial licence, and the requirement that the software
had to be easy to modify, by those who received a copy of the game, to create their
own game, gave LPmud a distinct software architecture. This architecture defined
the relationship between the Software Developer and user, the different components
of the software, and how these components were to be modified, over time, to meet
any changes in the game design, while maintaining this relationship. And others
have subsequently reimplemented the software architecture of Lars Pensjö, with dif-
ferent computer files and different software licences.

I played some AberMUD (to wizardhood once), and a little tinymud. I liked the idea
of a multi-user anonymous game very much, but found that Abermud was too difficult
to extend while Tinymud had too little emphasize on adventure. The social part was
nice, however.

So, I draw some guidelines about how to create a system which would be much
more simple to extend, …

I presented these ideas to some friends, who was going to create a MUD, or possi-
bly take Abermud and add things. These friends did not believe in my ideas, so I spent
a week to create a skeleton (small LPC interpreter) …

https://doi.org/10.1201/9781003502807-6

309Glossary

I added an internal editor…to make it possible for players (wizards) to add objects.
This was done because I did not have enough fantasy to create a good world myself,
so I though maybe others could do it for me. I made the requirement that players had
to achieve a certain level, so as to make it a challange. This idea of letting wizards
extend the game was not in the original plans. The original plan was really to make a
language that should be easy to extend dynamically.

My MUD-interested friends of course did have to try it out now, and they could not
stop until they reached wizardhood. At that stage, they had to try creating their own
objects and adventures….

Source: What is Genesis? © 1999, Chalmers Computer Society. Lars Pensjö

QUALITY CONTROL

A system that accepts or rejects products or services depending on whether these
meet all of the customer’s specifications and requirements.

SOFTWARE ARCHITECTURE

A description of a system for producing software. It includes a description of
the components of the system, the relationship between these components, and
the principles that govern how these components change. The components may
be as large as a software library, or as small as a single software module. The
components can also vary from any software documentation to any software tool
required by the system. A software architecture can serve as a basis for a software
design, or (since all the components do not have to be software components) a
software production process.

The software architecture of a program or computing system is the structure or struc-
tures of the system, which comprise software components, externally visible proper-
ties of those components, and the relationships among them.

…the architecture embodies information about how the components interact with
each other. This means the architecture specifically omits content information about
components that does not pertain to their interaction.

…the definition does not specify what architectural components and relationships
are. Is a software component an object? A process? A library? A Database? A com-
mercial product? It can be any of these things and more.

…the behaviour of each component is part of the architecture, insofar as that
behaviour can be observed or discerned from the point of view of another component.
This behaviour is what allows components to interact with each other, which is clearly
part of the architecture. Hence, most of the box-and-line drawings passed off as archi-
tecture are in fact not architectures at all. They are simply box-and-line drawings.

Source: Software Architecture in Practice © 1997, Addison-Wesley.
Bass, Clements and Kazman

The structure of the components of a program/system, their interrelationships, and
principles and guidelines governing their design and evolution over time.

Source: IEEE Transactions on Software Engineering © 1995, Institute of Electrical
and Electronics Engineers. David Garlan and Dewayne Perry

310 Event-Database Architecture for Computer Games

THE SOFTWARE PRODUCTION PROCESS

The steps for designing and implementing a game, using the Event-Database
Architecture. See the chapter entitled

The Software Production Process

in the book

Event-Database Architecture for Computer Games: Volume 1, Software
Architecture and the Software Production Process.

GAME WORLD

An imaginary world space in which a game takes place.

QUALITY

The characteristic of a product which meets a customer’s needs.

The totality of features and characteristics of a product or service that bear on its
ability to satisfy stated or implied needs. Not to be mistaken for ‘degree of excellence’
or ‘fitness for use’ which meet only part of the definition.

[ISO8402].

Source: Quality © 1993–2001, The Free On-line Dictionary of
Computing. Denis Howe

LPC

Lars Pensjö’s C. A programming language, modelled on the language ‘C’, designed
to allow you to modify the behaviour of items in multi-user adventure games.

ARTIFICIAL INTELLIGENCE

An attempt to model the human brain or to create a system that can make deductions.
That is to say, given two facts, can a computer determine whether a third fact is true?
All attempts to create such a system have failed.

TECHNICAL DESIGN SOURCES

Game Programming Gems by Mark De Laura.

INCOMPLETE GAME DESIGN

A design for a game which consistent of just enough highlights to sell a project to its
financial backer, but not enough detail to implement it.

311Glossary

An Incomplete Game Design

in the book

Event-Database Architecture for Computer Games: Volume 1, Software
Architecture and the Software Production Process.

UML

Unified Modelling Language. A language for describing the software components
of a computer system. The software components are constructed in a hierarchy.
This can be a hierarchy of inheritance or a hierarchy of reference. The relation-
ship between them is often described in the form of a box-and-line diagrams. Many
people confuse these diagrams with a software architecture. Even though it is not.
See the definition for software architecture.

FAILSAFE

A computer software or hardware system that can continue operating despite the
persistence of errors within it.

ABSTRACTION

The simplification of a problem by concentrating on essential aspects and ignoring
the rest.

COLLISION BOUNDARY

The area around a Game Object which would be used to determine its collision with
other Objects.

PROXIMITY BOUNDARY

The area around a Game Object which would be used to determine when another
Object was, or was not, in close proximity.

FIELD OF VIEW

The visible area in front of a camera.

NEAR AND FAR FOCAL LENGTH

The closest and furthest distance of the visible area in front of a camera.

WAYPOINT

A point along a path.

312 Event-Database Architecture for Computer Games

ILLUSION OF INTELLIGENCE SOURCES

Programming Game artificial intelligence (AI) by Example by Mat Buckland.

ARTIFICIAL NEURAL NETWORK

Computer software used to make intelligent decisions, whose design was inspired
by the study of animal brains. It is made up of a network of very simple software
processors, connected by one-way communication channels.

NEURON

A nerve cell adapted to conducting electrical impulses, in the human brain.

ARTIFICIAL NEURON

A mathematical model of a biological neuron. Each has multiple numerical parame-
ters or inputs and a single output. It has a mathematical formula called an Activation
Function which takes the sum of the inputs and produces a single output. In theory,
the inputs represent information from human sensors such as taste, sight, hearing,
smell and touch. In practice, the inputs are metrics or measurements gathered from
a real or imaginary space, by humans or computers, which represent an aggregation
of information from human sensors.

For example instead of being fed an image of two objects, and letting the Artificial
Neuron infer which one was closer, the relative distance of the two objects would be
measured and fed into the Artificial Neuron. The output of the Artificial Neuron rep-
resents a human response to the inputs. For example, the decision to move towards
the closer of two objects or to pick up the closer of two objects.

It may take a network of several Artificial Neurons in layers to process the inputs
and produce the final outputs. In these cases the output of an Artificial Neurons in
the intermediate layers is just a partial result of the final output. And the inputs in
those layers are just a derivative of the initial inputs.

EXPENSIVE GRAPHICS PROCESSORS

Graphics Processors are made up of several specialised maths processors running in
parallel. These were originally used to perform the calculations required to render
3D graphics to achieve Photorealism. But lately these have also proved ideal for per-
forming the parallel calculations in Artificial Neurons, and propagating the results
forwards and backwards through the layers of an Artificial Neural Network. The
demand for Photorealism and Artificial Neural Networks has increased the price of
these Processors to ridiculous levels. And resulted in a huge waste of resources on
buying, powering, cooling and developing software for these Graphic Processors.

For Photorealism, Graphics Processors are used to speed up the process of
producing realistic graphical effects, in many industries including Architecture,
Engineering, Construction, Film, Computer Games, and Automotive.

For Artificial Neural Networks, Graphics Processors are used to speed up the pro-
cess of Forward Propagation and Back Propagation in the network. Nvidia has built

313Glossary

one such Graphics Processor called H100 GPU that cost 40,000 dollars each. Many
large companies have bought billions of dollars worth of these GPUs.

In the Computer Games industry, although you will find some Corporate Media arti-
cles, which cover the industry, mention the shortage of Graphics Processors and the sub-
sequent high cost. And you will find other articles which mention the demand for these
Graphics Processors and link this with a desire for Photorealism. You will not, however,
find articles which connect the desire for Photorealism, with the demand for these Graphic
Processors, the subsequent shortage of these Processors, and the high price. Since the
Media itself manufactures demand by propagating the marketing material for these
Processors. Suggesting these are either innovative or ideal for achieving Photorealism or
the next best thing. The price of the one of the highest performing Graphic Processors,
in terms of Photorealism, you can get today, to make and play games, is the Nvidia RTX
4090 24GB. This costs between 1500 dollars and 2000 dollars. That single component
alone is now worth more than the cost of a whole computer system or personal computer
(PC), from ten years ago and many computer systems from today.

Nvidia board partners are reportedly looking to increase the prices of various
GeForce RTX products in China. These prices reflect up to a 10% increase in the cost
of Nvidia products over American prices and US markets, and they are expected to hit
consumers soon…

Recent innovations from Nvidia have helped usher in some of video gaming’s
most popular visual features like ray tracing, which has become increasingly stan-
dard in modern games. As time goes on, more powerful tools are created, allowing
developers to create even more stunning and impressive games. However, as technol-
ogy advances, so does the cost and price of these products, with Nvidia’s partners
expected to increase price hikes.

Source: Nvidia Partners Are Raising Their Prices © 2024.
Game Rant. Luke Dammann

Updated October 22, 2024, by Hamza Haq: The graphical fidelity boost Nvidia’s RTX
technology provides is no secret, elevating in-game visuals from okay-ish to downright
gorgeous. Despite its popularity, few games truly utilize the tool to its fullest potential.
While nearly all games that have come out in the last few years have the option to
turn on ray tracing in their graphics settings, the difference is not always noticeable.
Whether due to low-budget or poor implementation, games that truly showcase what
ray tracing can do are quite uncommon. Luckily, with more and more developers
learning how to incorporate this game-changing technology into their games, that
may not remain the case in the future. For now, though, here are some of the best
games to test out Nvidia RTX and its capabilities….

Source: Nvidia RTX: Top 27 Games That Utilize Ray Tracing The Best © 2024.
Game Rant. Ashish Walia

Is RTX 4090 Worth It?
Yes, the GeForce RTX 4090 provides good value for money within its price range, of

around £2068, when bought new. It surpasses the benchmark performance of GeForce
RTX 3090, the closest competitor within this price bracket, by a margin of 80.7%.

…
PSU for RTX 4090

314 Event-Database Architecture for Computer Games

The GeForce RTX 4090 requires 450 watts to operate. However, when select-
ing a power supply, it’s crucial to account for the power consumption of the entire
system. Therefore, add together the TDP of your GPU and CPU, then multiply the
sum by 2. For instance, if you pair GeForce RTX 4090 with Intel Core i9-13900K,
which has a TDP of 125W, you should aim for a power supply around 1200 watts.
This approach ensures a substantial margin, allowing your PSU to operate coolly
and efficiently.

Another reason to opt for a more potent PSU than your system’s exact power
requirement is due to GPU transient power spikes, which occur when the GPU is
under heavy load. These spikes may cause the PC to shut down if the PSU lacks suf-
ficient overhead…’.

Source: RTX 4090 Price History UK © 2024. Best Value GPU

The H100 is estimated to cost between $20,000 and $40,000 meaning that Meta used
up to $640 million worth of hardware to train the model. And that’s just a small slice
of the Nvidia hardware Meta has been stockpiling. Earlier this year, Meta said that it
was aiming to have a stash of 350,000 H100s in its AI training infrastructure – which
adds up to over $10 billion worth of the specialized Nvidia chips.

Who is hoarding Nvidia H100 GPUs?
Nvidia’s H100 GPU is one of the most in-demand technologies in the AI arms race.

Companies are stockpiling the $40,000 chips to train more powerful AI models.

Company Number of H100 GPUs Approx. Value

Meta 350,000 $7–$14 billion

xAI 100,000 $2–$4 billion

Tesla 85,000 $1.7–$3.4 billion

Andreessen Horowitz** 20,000 $400–$800 million

*Numbers are either stated totals in use, or year end targets.

Source: The companies; **The Information

Venture capital firm Andreesen Horowitz is reportedly hoarding more than 20,000 of
the pricey GPUs, which it is renting out to AI startups in exchange for equity, accord-
ing to The Information.

Tesla has also been collecting H100s. Musk said on an earnings call in April that
Tesla wants to have between 35,000 and 85,000 H100s by the end of the year.

But Musk also needs H100s for X and his AI company xAI. This week,
Musk boasted on X that xAI’s company’s training cluster is made up of 100,000
H100s.

Source: Just four companies are hoarding tens of billions of dollars worth
of Nvidia GPU chips © 2024. Sherwood. Jon Keegan.

EXPENSIVE ERRONEOUS LANGUAGE LEARNING MODELS

Expensive large Language Learning Models, such as ChatGPT Web Server, still
produce unforeseen, unfeasible or prohibited results from time to time. And they still
cannot solve basic mathematical and logical problems.

315Glossary

Researchers into AI have found that many of the models used to create Artificial
Neural Networks, such as Language Learning Models, are not new. These are just a
form of old Pattern Recognition Algorithms. That leads to the following conclusions:

1.	Pattern Recognition Algorithms have been misnamed AI Algorithms or
Artificial Neural Network Algorithms.

2.	These algorithms basically learn how to recognise patterns and generate
patterns, not how to perform deductions, logic or reasoning, that meet the
definition of AI.

3.	A good example of the application of these algorithms is recognising the
shape of characters in one font, and recognising the same characters in
another font.

4.	A bad example of the application of these algorithms is anything that
involves large amounts of training data or real world data e.g. real-world
management problems or attacking enemy Surface-To-Air SAM sites.

5.	During training, the algorithm requires a system or function to reward or
penalise the algorithm for making good or bad choices.

6.	After training, the algorithm can come up with unforeseen, unfeasible or
prohibited results if the system or function rewarding or penalising it was
misconceived or too limited.

7.	Language Learning Models have a predecessor in the form of Artificial
Linguistic Internet Computer Entity (Alice) developed by Joseph
Weizenbaum at MIT in the early 1960s that failed to meet the definition
of AI.

8.	Language Learning Models have a predecessor in the form of ELIZA from
the 1980s, named after Eliza Doolittle, a working-class character in George
Bernard Shaw’s Pygmalion, that again failed to meet the definition of AI.

9.	Language Learning Models raise ethical questions about whether you
should or should not include language from prohibited material in the train-
ing data, which has never been answered.

10.	Language Learning Models raise ethical questions about whether you
should or should not include bias sources in the training data e.g. the New
York Times, which has never been answered.

11.	Language Learning Models process symbols and patterns but have no
understanding what those symbols and patterns represent.

12.	Language Learning Models cannot solve mathematical or logical problems,
not even basic ones.

13.	To overcome these limitations, Language Learning Models need a funda-
mental change to the paradigm they use.

He notes that one simulated test saw an AI-enabled drone tasked with a SEAD mis-
sion to identify and destroy SAM sites, with the final go/no go given by the human.
However, having been ‘reinforced’ in training that destruction of the SAM was the
preferred option, the AI then decided that ‘no-go’ decisions from the human were
interfering with its higher mission – killing SAMs – and then attacked the operator
in the simulation. Said Hamilton: ‘We were training it in simulation to identify and
target a SAM threat. And then the operator would say yes, kill that threat. The system

316 Event-Database Architecture for Computer Games

started realising that while they did identify the threat at times the human operator
would tell it not to kill that threat, but it got its points by killing that threat. So what
did it do? It killed the operator. It killed the operator because that person was keeping
it from accomplishing its objective.’

He went on: ‘We trained the system – “Hey don’t kill the operator – that’s bad.
You’re gonna lose points if you do that”. So what does it start doing? It starts destroy-
ing the communication tower that the operator uses to communicate with the drone to
stop it from killing the target.’

Source: Highlights from the RAeS Future Combat Air & Space Capabilities
Summit: AI – is Skynet here already? © 2023. Royal Aeronautical Society.

Tim Robinson and Stephen Bridgewater

Currently there is some hype about a family of large language models like
ChatGPT. The program reads natural language input and processes it into some
related natural language content output. That is not new. The first Artificial
Linguistic Internet Computer Entity (Alice) was developed by Joseph Weizenbaum
at MIT in the early 1960s. I had funny chats with ELIZA in the 1980s on a main-
frame terminal. ChatGPT is a bit niftier and its iterative results, i.e. the ‘con-
versations’ it creates, may well astonish some people. But the hype around it is
unwarranted.

Behind those language models are machine learning algos that have been trained
by large amounts of human speech sucked from the internet. They were trained with
speech patterns to then generate speech patterns. The learning part is problem num-
ber one. The material these models have been trained with is inherently biased. Did
the human trainers who selected the training data include user comments lifted from
pornographic sites or did they exclude those? Ethics may have argued for excluding
them. But if the model is supposed to give real world results the data from porn sites
must be included. How does one prevent remnants from such comments from sneaking
into a conversations with kids that the model may later generate? There is a myriad
of such problems. Does one include New York Times pieces in the training set even
though one knows that they are highly biased? Will a model be allowed to produce
hateful output? What is hateful? Who decides? How is that reflected in its reward
function?

Currently the factual correctness of the output of the best large language models
is an estimated 80%. They process symbols and pattern but have no understanding of
what those symbols or pattern represent. They can not solve mathematical and logical
problems, not even very basic ones.

Source: ‘Artificial Intelligence’ Is (Mostly) Glorified Pattern Recognition
© 2024. Moon of Alabama. ‘Bernhard Billmon’

NEURAL NETWORK SOURCES

Introduction to Neural Networks by Kevin Gurney.

FLAWS IN PHOTOREALISM

There are many flaws in the Photorealism of computer games which the Software
Developers have to strive continuously to overcome. Despite advances in the Graphics
Processors, and the Hardware Rendering processes these perform, there is a never

317Glossary

ending cycle of the development of more and more demanding rendering algorithms,
each year, which require more and more resources.

Each year, they claim to have finally achieved Photorealism. Only for the following
year to make claims that they have produced games with greater Photorealism. That show
that the claims of the preceding year were false. And there were flaws in the Photorealism
which they could see but would not admit to at the time. Therefore the images of their
games in the preceding year could not have been Photorealistic. And that in turn means
that Photorealism is either a pipe dream, a fantasy, a false hope, an unattainable dream.
Or there is a fundamental flaw in the methods they try to use to achieve Photorealism.

Nevertheless, despite these flaws, Photorealism is one of the main selling points
in the marketing material of commercial game-engines such as the Unreal Engine
and the Unity Engine.

‘UNREAL ENGINE 5 – WHAT IT’S ALL ABOUT

…

UNREAL ENGINE 5 – EXPECTATIONS

Understandably, there are high expectations for Unreal’s newest launch. Last year, an
article from Perforce said UE5 would change the industry because ‘…it will enable
truly immersive experiences – while reducing the complexity of building games, as
well as in film and animation.’

It’s not just developers who are excited about what next-gen graphics can bring.
Some recent studies reveal that upwards of 75% of gamers make purchases based on
graphics quality.

…

DID UNREAL ENGINE 5 (EARLY ACCESS VERSION)
LIVE UP TO EXPECTATIONS?

When UE5 was first announced, Epic made it clear what the main goal was: ‘[to]
achieve photorealism on par with movie, CG, and real life,’ all while keeping these
tools accessible to teams in the industry.

This is a huge promise. They didn’t say it was meant to look ‘good;’ they claimed to
keep up with photorealism in every industry. So the question is: Did they live up to it?

…

MetaHumans
The announcement and early access of MetaHuman Creator resulted in whispers

throughout the industry of what impact this amazing software could have on game
development moving forward. Shortly after opening MHC, you’ll notice just how easy
it is to create photorealistic characters, customized to your needs….

Source: Unreal Engine 5 – What It’s All About? © 2021. Incredibuild.
Joseph Sibony

Unity and Unreal Engine are two of the most prominent game engines in the industry,
known for their cutting-edge capabilities in rendering photorealistic graphics. Both
engines have been extensively used in the development of AAA games, architectural
visualizations, and various other applications that demand high-fidelity visuals. In

318 Event-Database Architecture for Computer Games

this exploration, we will delve into the strengths and distinguishing features of each
engine when it comes to achieving photorealistic graphics.

UNITY

… However, in recent years, Unity has made significant strides in enhancing its graphics
capabilities, cementing its position as a powerful engine for photorealistic rendering.

1.	 High-Definition Render Pipeline (HDRP): Unity’s HDRP is a state-of-the-art
rendering pipeline designed specifically for high-fidelity graphics. It supports
advanced features such as real-time global illumination, physically based ren-
dering (PBR), and high-dynamic-range (HDR) lighting, enabling developers to
create highly realistic and visually stunning environments.

2.	 Scriptable Render Pipeline: Unity’s Scriptable Render Pipeline (SRP) allows
developers to customize and extend the rendering process …. This flexibility
enables advanced techniques for achieving photorealistic results tailored to
specific project requirements.

3.	 Real-Time Ray Tracing: With the introduction of real-time ray tracing support,
Unity has opened the door to accurate simulations of light behavior, enabling
realistic reflections, shadows and global illumination effects ….

4.	 Asset Importers and Optimization: Unity’s robust asset import pipeline and
optimization tools … ensuring efficient rendering and performance optimiza-
tion for photorealistic graphics.

5.	 Integration with Industry-Standard Tools: Unity seamlessly integrates with
industry-standard tools such as Autodesk Maya, 3ds Max, and Substance
Painter, allowing artists and developers to leverage their existing workflows
and pipelines for creating photorealistic content.

…

UNREAL ENGINE

…

6.	 Chaos Physics and Destruction: Unreal Engine’s Chaos physics and
destruction systems enable realistic simulations of rigid body dynamics,
soft body deformations, and large-scale destruction events, adding to the
overall level of realism and immersion.

Source: Unity vs Unreal: Exploring Cutting Edge of Photorealistic
Graphics © 2024. Oodles Technologies

RENDERING FARMS

A cluster or network of computers across which a software rendering process is dis-
tributed to produce Photorealistic images. Typically for film or TV industries. Any
company that offers these computers as a service is also called a Rendering Farm.

MATERIALS

Formulae for controlling how the surface of a polygon is rendered in graphics, or is
simulated in physics.

319Glossary

DATA DESIGN

A description of all the data needed by a game. It is also a description of all the data
produced by the tools used to build a game.

RGBA

A data format for describing the colour of a pixel by four values, for its Red, Green,
Blue and a special Alpha component. The last of these controls how it blends with
the colour of any underlying image.

GRAPHIC SHADERS

Machine code, that is executed during the Hardware Rendering process of a Graphics
Processor, that controls how a surface or vertices of a polygon is rendered on the
computer screen or in a Texture.

VERTEX SHADER

A Graphic Shader that is used to perform the projection of the vertices of the poly-
gons of 2D images or 3D models, through a camera, into Normalised space (an area
which is 1 × 1 × 1) and then onto screen space (i.e. the computer screen). And it is
used to set the amount of lighting at each vertex.

GEOMETRY SHADER

A Graphic Shader that is optional. It is used either to take the 2D or 3D primi-
tives from the Vertex Shader and produce another primitive, adding or remov-
ing vertices. Or for rendering multiple images of the same primitive, at once,
to the same target (i.e. computer screen or Texture). Or for feeding back infor-
mation about the vertices of the primitives produced by the Vertex Shader, to
later steps.

FRAGMENT SHADER

A Graphic Shader that is optional. It parses the pixels of the Textures of the polygons
of 2D images or 3D models, after Rasterisation (i.e. the projection of the pixels on
to the screen). And it can change the depth and colour of the pixels depending on
some kind of formula. And it can also discard pixels and stop these being rendered
dependent on another formula.

ENTITY-RELATIONSHIP DIAGRAM

A diagram which shows all the items (or entities) stored in a Relational Database, and
the relationship between these items.

320 Event-Database Architecture for Computer Games

TEST TOOLS

The set of tools that could be used to build a minimal software design, based on the
Event-Database Architecture, and test it. See the subchapters entitled Documentation
tools to Sound tools in the book, Event-Database Architecture for Computer Games,
Volume 1: Software Architecture and Software Production Process.

GUIDELINES FOR BUILDING INTERFACES

Strive for consistency is the first principle in designing User Interfaces, as outlined
by Ben Shneiderman in his guide, Designing the User Interface.

1.	 Strive for consistency.
This principle is the most frequently violated one, and yet the easiest one to
repair and avoid. Consistent sequences of actions should be required in similar
situations, identical terminology should be used in prompts, menus, and help
screens, and consistent commands should be employed throughout. Exceptions,
such as nonprinting of passwords or no abbreviation of the DELETE com-
mand, should be comprehensible and limited in number.

Source: Designing the User Interface © 1987, Addison-Wesley.
Ben Shneiderman

CLOSED DATA FORMAT

The secret description of the layout of data in a Database, and how each data is used.
This description is proprietary and only known to a very limited number of software
applications.

INFORMATION HIDING

A technique commonly used in Object-Oriented Design of software, to protect one
software module (or Object) from being erroneously accessed by another.

NO REDUNDANCY (IN A DATABASE)

The process of removing duplication of information in a Database is called
Normalization.

LOGIC FLAG

Data which is either set or cleared, when a condition that a software procedure uses
to control its behaviour, changes e.g. when a task it is waiting for is complete.

STATE SWITCH

Data which controls the way software behaves. It usually controls only one software
module. It ensures that two modes of operation do not overlap. Or, it ensures that the
modes follow each other in the correct sequence.

321Glossary

SOFTWARE CODE

The list of programming language instructions that describe the procedures a com-
puter must follow.

DATA OFFSET

The index of a subset of data, within a Database. This would be in the form of a
number, which represented the distance of that data, from some reference point,
normally the start of that Database. This could be used to quickly search its contents,
or define its layout.

DATABASE DESIGN SOURCES

Handbook of Relational Database Design by Candace C. Fleming and Barbara Von
Halle.

FINITE STATE MACHINE

A method for designing a computer system based on two basic concepts: that the sys-
tem has a well-defined set of states, and that there exists a well-defined set of events
connecting any two states.

DESKTOP COMPUTER

An International Business Machines (IBM) PC or compatible model. It was designed
for business but is now popular as a home computer too.

SCALABLE

A software which can vary its performance depending on the resources it has avail-
able. And thus it can be used on a range of computers, with different speeds, sizes of
memory and other levels of resources. Scalable components. A software procedure
or data that can vary the time and space that it uses.

HOME COMPUTER

A computer system designed for home use e.g. Playing games, music, learning or
small business software.

GAMES INDUSTRY COMMENTATORS

Some Software Developers keep an up-to-date version of their computer games on
desktop computers, even though they never release this version.

322 Event-Database Architecture for Computer Games

SMALL DEVICES (WITH RELATIONAL DATABASES)

Relational Databases have been used with software deployed on mobile phones. One
of the companies that has developed such technology has been Birdstep Technology.
Their technology is known as ‘RDMm’.

ORDERED SOFTWARE SYSTEM

A system of software components that has been assembled according to some prin-
ciples. And therefore can be progressively disassembled, using the same principles,
without causing errors when the software is rebuilt.

SO … THERE ARE NO OBVIOUS DEFICIENCIES

Quotation by C. A. R. Hoare, a computer-scientist best known for his discovery of a
widely used procedure for quickly sorting items of data. He later became a Professor
of Computing at Oxford University, in the UK.

There are two ways of constructing a software design: One way is to make it so
simple that there are obviously no deficiencies, and the other way is to make it so
complicated that there are no obvious deficiencies. The first method is far more
difficult.

– C.A.R. Hoare

Source: Adages on Software Design and Development © 1997.
Stephen Block. Adelphi University

FORWARD ENGINEERING

The process of building a software product (or any manufactured product) in four
phases: analysis, design, implementation and testing.

REVERSE ENGINEERING

The process of rebuilding a software product (or any manufactured product) in four
phases: re-testing, re-implementation, re-design and re-analysis.

The re-testing phase involves diagnosing the external characteristics of the prod-
uct and inferring the low-level tools used to build it from the diagnosis.

The re-implementation phase involves rebuilding these low level tools.
The re-design phase involves inferring the high-level designs from the low-

level tools.
The re-analysis phase involves using these high-level designs to either re-design

the original product in another form as a competing product. Or to re-design
the original product without some flaw or error when you do not have access to
its original design. Or to design a new product to interoperate with the original
product.

323Glossary

SOFTWARE ENGINEERING

A systematic, disciplined approach to software production. It was devised to cope
with large projects which no one individual could undertake to deliver in a timely,
secure fashion.

This approach may begin with a prototype. A prototype is the first product
of the software production process. All other products of that process have the
same qualities. So the prototype can be used to assess the feasibility of the
process.

Software Engineering: (1) The application of a systematic, disciplined, quantifiable
approach to the development, operation, and maintenance of software; that is, the
application of engineering to software. (2) The study of approaches in (1).

Source: IEEE Standards Collection: Software Engineering, IEEE Standard
610.12-1990 © 1993, Institute of Electrical and Electronics Engineers

Software engineering is the establishment and use of sound engineering principles in
order to obtain economically software that is reliable and works efficiently on real
machines.

Source: Software Engineering: A Report on a Conference Sponsored
by the NATO Science Committee © 1969, North Atlantic Treaty

Organisation. Naur, P. and B. Randall (eds.)

HIGH TURNOVER OF STAFF

Very few of the staff of the Software Developers, in the Computer Games industry,
stay there or in the industry as a whole, for more than a few years.

DESIGN PRINCIPLES

A pre-emptive statement at the beginning of a design document that sets the rules for
providing a solution to a problem.

A design principle is not a solution to a problem. It is a tool for finding a solution
to a problem.

A design principle can be a general-purpose tool e.g. a game editor. That
will be used to design a Game World (see the definition of game editor in the
Glossary).

A design principle can be a benchmark that gives optimum performance for a
microprocessor chip in some computer hardware used to play games. That will be
used to select or reject software designs which best fit the design of that benchmark
(see the definition of benchmark in the Glossary).

A design principle can be a design pattern. That will be used to write the code for
the game (see the definition of design patterns in the Glossary).

A design principle can be combination of a game editor, a benchmark or a design
pattern.

324 Event-Database Architecture for Computer Games

This should not be confused with the principles of a software architecture. The
motivation behind design principles and the motivation behind the principles of a
software architecture are different.

The motivation behind design principles is the need to find a solution to a problem
which is not well understood, as quickly as possible. This quick solution or software
design is probably going to change from the beginning to the end of production. And
these changes will not be documented. So the principles assume that Reverse engi-
neering will be required to understand this software design.

The motivation behind the principles of a software architecture is the need to
maintain the relationships between the components of that architecture, from the
beginning to the end of production. Each component may be a component of a soft-
ware design, or a component of a production process.

This difference between the motivation of the design principles and the principles
of a software architecture leads to three other differences.

Firstly, the principles of a software architecture relate to the components of that
architecture. And you can identify all of these components, the form and reason for
the relationship between the components, and the role each one plays in that archi-
tecture from its principles.

However, design principles relate to tools or methods that facilitate Reverse engi-
neering. Some of these tools or methods may be used to build the components of a
software design. But others may not. The benefits of these tools or methods lie in the
ability of these to facilitate Reverse engineering. So, for example, the tools would not
include one that allowed you to build a component but did not allow you to diagnose
it. Furthermore, you could not identify what any of the components were going to be,
or the role of each one in the software design, from these design principles. Therefore,
although you may be able to infer, from design principles, the form of the relationships
between these components, you could not identify the function of these relationships.

The second difference is that the principles of a software architecture govern how
the components of that architecture would change, when the requirements of the
software changed. In contrast, design principles do not explain how changes would
be performed in a production process.

Finally, the principles of a software architecture stem from a context. This context
is whatever problem the software architecture was meant to solve. The principles
of the architecture are chosen after examining that problem and do not presume to
apply outside of that context. Design principles, on the other hand, have no context.
These principles proceed an examination of any problem, and the design of a solu-
tion. The principles are chosen by default, based on popular methods or tools, and
assume these may be applied in any context.

DESIGN PATTERNS

A design pattern is a general description of a solution to a common design prob-
lem. In software production, design patterns usually refer to solutions which
have been built using particular programming languages. Namely, those that
support a technique known as ‘Object-Oriented Design’. Within this technique,
software modules are known as ‘Objects’. An ‘Object’ can inherit the properties

325Glossary

of other ‘Objects’. In which case the former is called the child and the latter
is called the parent. The properties of an ‘Object’ are controlled by the set of
software procedures or data that give access to its services called its Interface.
Examples of programming languages which support this technique are C++, C#,
Java, and Smalltalk.

The seven most popular design patterns are Singleton, Factory, Facade, Strategy,
Observer, Builder and Adapter.

Singleton Design Pattern

A Singleton Design Pattern involves the principle of creating one and only one
‘Object’ to control open or global access to some service.

Factory Design Pattern

A Factory Design Pattern involves the principle of having a parent ‘Object’ which
has many children derived from it called ‘Creators’. And the parent delegates the
creation of other final concrete usable ‘Objects’ or ‘Products’ to the ‘Creators’.

Facade Design Pattern

A Facade Design Pattern involves the principle of creating a single ‘Object’ to pro-
vide a single unifying Interface to a group of multiple disparate Interfaces of a group
of other ‘Objects’, which together perform a single complex task.

Strategy Design Pattern

A Strategy Design Pattern involves the principle of having a parent ‘Object’ which
has many children derived from it. That executes a family of algorithms which
accomplish similar tasks e.g. sorting products being sold on a Web Page by colour,
size or price. And having your program choose which algorithm to execute depend-
ing on the User’s choices.

Observer Design Pattern

An Observer Design Pattern involves having one ‘Object’ called a ‘Notifier’ which
other ‘Objects’ called ‘Observers’ can subscribe or unsubscribe to. To be notified
when an important event happens or something important changes.

Builder Design Pattern

A Builder Design Pattern is similar to a Factory Design Pattern. But instead of
the ‘Creators’ you have ‘Objects’ called ‘Builders’. And instead of building the
‘Products’ in one step, the ‘Builders’ build ‘Products’ in multiple steps. And you
have an additional ‘Object’ called a ‘Director’ which controls the execution of these
steps and releases the final ‘Products’.

326 Event-Database Architecture for Computer Games

Adapter Design Pattern

An Adapter Design Pattern involves the principle of ensuring that two ‘Objects’ with
dissimilar Interfaces have the same Interface for the sake of consistency and compat-
ibility. By creating a new ‘Object’ called a ‘Wrapper’, which gives access to one or
both ‘Objects’ through the same Interface.

Each solution, described by a design pattern, represents the combined wisdom of
engineers who have already addressed that problem in the past, using these program-
ming languages. And the pattern supposedly helps future engineers avoid repeating
their mistakes, by choosing partial or inelegant solutions, in their designs. Many peo-
ple in the Computer Games industry conflate design patterns with software archi-
tectures, like the Event-Database Architecture. But the design patterns are much
low-level tools than software architectures.

Firstly, design patterns are only marginally more abstract than the instructions
of a programming language. A design pattern could describe the set of software
modules for building a solution. And it could describe what the general relation-
ship should be between those modules. But it could not describe what practical role
each module would play in the overall software design at highest level. Nor could it
describe any solution without referring to examples, written in one of the aforemen-
tioned programming languages. Thus, a design pattern is dependent on program-
ming languages, but independent of practical applications. A design pattern could be
used for anything; from building computer games to word processors.

Secondly, the basis of design patterns, like all design principles, is nothing more
than the infallibility of popular wisdom. These patterns assume that future genera-
tions of engineers could not possibly come up with a better design than their pre-
decessors. The mistakes that later generations would make, by choosing partial or
inelegant solutions, would not lead them to find even better solutions. So they should
consider fitting any problems they encounter around the design patterns (i.e. the tools
or programming languages) of their predecessors.

But this assumption is false. Future generations could conceive of better solutions.
And the close association of design principles, with programming languages (espe-
cially C++), is another huge flaw. A technique which nominally associates itself with
high-level abstract designs should not be closely associated with low-level program-
ming languages or tools. These two flaws open design patterns to abuse. And this has
been perfectly illustrated in the Computer Games industry, where design patterns
have been regularly abused.

For example, design patterns have been used to select or reject applicants wishing
to join a company. Applicants who did not show knowledge of the arbitrary set of
design patterns, described in one of the popular books that covered the topic, have
been rejected. Whereas those who did show such knowledge have been accepted.
And by doing so, their interviewers have implicitly set out the design patterns which
they expect the staff to abide by.

Another example of the abuse of design patterns has involved Reverse engineer-
ing. Design patterns have been used as a means of making the computer files, writ-
ten by the Game Programmers, more ‘readable’. The documentation of the design
of their software modules has been neglected. Instead, the other Programmers have

327Glossary

been expected to use their ability to recognise design patterns, to infer the design
of these software modules. In other words, they have been expected to use design
patterns for Reverse engineering. And this has been euphemistically been known as
‘improving code readability’.

Thirdly, the principles of a software architecture and the principles of a design pattern
are not the same. Take example, the rule for generating a system of Events in the Event-
Database Architecture, and a rule for generating a system of events with design patterns.

In the past, the Software Developers of some Computer Games have chosen a
system of Events to use based on the Observer Design Pattern. In that design pattern,
you have one software module or ‘Object’ called a ‘Notifier’ which other ‘Objects’
called ‘Observers’ can subscribe or unsubscribe to. To be notified when an important
event happens or something important changes. And you can have any number of
‘Notifiers’ and any number of ‘Observers’ in a game.

As such the system of events generated by design patterns has had four basic dif-
ferences from the system of Events generated by the Event-Database Architecture.

Firstly, all the ‘Objects’ used to make a Computer Game cannot be identi-
fied in the system of events generated by the Observer Design Pattern. Since
typically Computer Games which employ design patterns do not use only one
design pattern. You can identify ‘Objects’ which are ‘Notifiers’ and those which
are ‘Observers’. But you cannot identify ‘Objects’ which are neither ‘Notifiers’
nor ‘Observers’, and which are part of other design patterns. For example, you
cannot identify ‘Objects’ which only share information between other ‘Objects’,
like the current state of quests available in the game. Typically these ‘Objects’
would be created with another design pattern like the Singleton Design Pattern.

Secondly, the relationships between all the ‘Objects’ also cannot be identified
from the Observer Design Pattern. ‘Observers’ can dynamically subscribe and
unsubscribe to respond to events broadcast by ‘Notifiers’. And you cannot identify
the role which any ‘Notifier’ or ‘Observer’ plays in the overall design.

Thirdly, the system of events of the Observer Design Pattern are presumed to be
applicable in any context.

And finally, the system of events generated by the Observer Design Pattern can-
not be used as a device for defining a language for all the staff involved in software
production process to communicate. Instead, it has only been visible, and limited, to
the communication of those staff who appreciate its value for Reverse engineering,
namely the Game Programmers.

Contrast this with the system of Events generated by the Event-Database
Architecture.

Firstly, you can identify all the ‘Objects’ in the system because every ‘Object’ has
an Event it responds to and an entry in the Game Database.

Secondly, you can identify the relationship between all ‘Objects’ have Secondary
Events which they respond to, and these Events have entries in the Database. Even
if that Event is rare or temporary. And you can identify the role which each ‘Object’
plays in the overall design from its Events and the documentation maintained about
these Events in the data design by the Database Administrator.

Thirdly, the system of Events applies only to the context of the Event-Database
Architecture. This is building Computer Games.

328 Event-Database Architecture for Computer Games

Fourthly, the system of Events facilitates the communication through natural lan-
guage of all the staff. Since all the Events are visible to all the staff including Game
Producers, Game Artists, Game Programmers, Game Designers, Game Testers,
Sound Engineers and Database Administrators, through a shared Database. And any
of them can add new Events, edit Events and create a chain of Events through that
Database.

Design patterns can speed up the development process by providing tested, proven
development paradigms. Effective software design requires considering issues that
may not become visible until later in the implementation. Reusing design patterns
helps to prevent subtle issues that can cause major problems and improves code read-
ability for coders and architects familiar with the patterns…

…Design patterns provide general solutions, documented in a format that doesn’t
require specifics tied to a particular problem.

Patterns allow developers to communicate using well-known, well understood
names for software interactions….

Some feel that the need for patterns results from using computer languages or tech-
niques with insufficient abstraction ability. Under ideal factoring, a concept should
not be copied, but merely referenced. But if something is referenced instead of cop-
ied, then there is no “pattern” to label and catalog. It is also said that design pat-
terns encourage navigational database-like structures instead of the allegedly cleaner
relational approach where such structures are viewpoints instead of hard-wired into
programming code….

Source: Design Patterns. Wikipedia. The Free Encyclopaedia. 2005

CREATIONAL

Main article: Creational pattern

Creational patterns are ones that create objects, rather than having to instantiate
objects directly. This gives the program more flexibility in deciding which objects need
to be created for a given case.

•	 Abstract factory groups object factories that have a common theme.
•	 Builder constructs complex objects by separating construction and

representation.
•	 Factory method creates objects without specifying the exact class to create.
•	 Prototype creates objects by cloning an existing object.
•	 Singleton restricts object creation for a class to only one instance.

STRUCTURAL

Structural patterns concern class and object composition. They use inheritance to
compose interfaces and define ways to compose objects to obtain new functionality.

•	 Adapter allows classes with incompatible interfaces to work together by wrap-
ping its own interface around that of an already existing class.

•	 Bridge decouples an abstraction from its implementation so that the two can
vary independently.

•	 Composite composes zero-or-more similar objects so that they can be manipu-
lated as one object.

329Glossary

•	 Decorator dynamically adds/overrides behaviour in an existing method of an
object.

•	 Facade provides a simplified interface to a large body of code.
•	 Flyweight reduces the cost of creating and manipulating a large number of

similar objects.
•	 Proxy provides a placeholder for another object to control access, reduce cost,

and reduce complexity.

BEHAVIORAL

Most behavioral design patterns are specifically concerned with communication
between objects.

•	 Chain of responsibility delegates commands to a chain of processing objects.
•	 Command creates objects that encapsulate actions and parameters.
•	 Interpreter implements a specialized language.
•	 Iterator accesses the elements of an object sequentially without exposing its

underlying representation.
•	 Mediator allows loose coupling between classes by being the only class that has

detailed knowledge of their methods.
•	 Memento provides the ability to restore an object to its previous state (undo).
•	 Observer is a publish/subscribe pattern, which allows a number of observer

objects to see an event.
•	 State allows an object to alter its behavior when its internal state changes.
•	 Strategy allows one of a family of algorithms to be selected on-the-fly at runtime.
•	 Template method defines the skeleton of an algorithm as an abstract class,

allowing its subclasses to provide concrete behavior.
•	 Visitor separates an algorithm from an object structure by moving the hierar-

chy of methods into one object.

Source: Design Patterns. Wikipedia. The Free Encyclopaedia. 2023

HEURISTICS

A set of rules, based on educated guesses, that limits the search for solutions. These
are intended to increase the probability of solving a problem, which is not well
understood.

BENCHMARK

A test to measure the performance of computer software, hardware or their compo-
nents. These are used to compare the relative performance of competing products.

However, these tests are typically designed by one manufacturer to highlight the
advantages of their products, compared with competing products. Therefore the
results of the tests are often disputed and considered biased or unreliable.

TIME COMPLEXITY (OF AN ALGORITHM)

This relates to how much longer it takes an algorithm to solve a problem as the size
of that problem increases. That is to say, how much longer would it take a theoretical

330 Event-Database Architecture for Computer Games

software procedure to perform its task when the size of that task increases? In theory,
the lesser the increase in time it takes, as the size of the problem increases, the bet-
ter that algorithm or software procedure is. Compared with one which has a greater
increase in time.

HACK

A quick job that produces what is needed but not well.

HACKER

Someone who works by using Hacks. A Programmer who writes software not by
planning, but by misusing the design of software, software tools, programming lan-
guages, computer hardware and different techniques to achieve a quick result.

OBSESSION WITH EFFICIENCY

In a software project, not only the engineers involved may become obsessed with
efficiency. Other staff may become obsessed too.

PLACE-HOLDER

An item in a software production process (e.g. a software procedure, a software mod-
ule, a 3D model, a Texture, a polygon, a sound effect) which acts as a substitute for
a feature which has yet to be designed. That is to say, it has no clear requirements to
meet. It either does nothing or only partially implements the feature.

BUGS, HACKS AND PLACE-HOLDERS

External and internal software errors. See the chapter entitled

Division and Consistency

in the book

Event-Database Architecture for Computer Games: Volume 2, Game Design
and the Nature of the Beast.

HASTE MAKES WASTE!

From John Ray’s 1678 Proverb collection.

NAMING CONVENTION

A written convention for naming software data, procedures and modules. The names
should give helpful information about the use of each, in order to avoid errors.

331Glossary

HUNGARIAN NOTATION

A Naming convention invented by Charles Simonyi, a Hungarian, while at the
Microsoft Corporation.

SCOPE (OF DATA)

The limited block (i.e. software procedure or module) where software data may be used.
This helps protect the data from erroneous changes, allows reuse of the same name for
the data, in other blocks, and simplifies each block by limiting the data to that block.

COMMENTS

Text embedded in software code, which is ignored by the computer, and is merely
there to help explain the use and function of software data, procedures and modules.

DOXYGEN

A software tool used to generate documentation for software, from the set of com-
puter files used to build its software modules normally by extracting the Comments
from those files.

HTML

Hypertext Markup Language. A programming language for describing documents
displayed on the World-Wide-Web.

FIRST PROGRAMMING LANGUAGE

The first programming language that allowed you to name data was Formula
Translation (FORTRAN), created by the IBM Corporation in 1957.

SOFTWARE INDUSTRY COMMENTATORS

Accompanying many tools which have been introduced into the Software industry,
those who have made this introduction have stressed the importance of keeping the
components of a computer system as independent as possible.

COMPLEX DATA TYPES

The translation of simple constructs (i.e. nouns), in a natural language, into complex
constructs (i.e. software modules), in a programming language.

TYPE SAFE (OF DATA)

In theory, software which is type safe has sets of data which have been so well defined that
it is possible for the tools, which use that data to build software, to automatically recognise
erroneous steps within it. Hence it is impossible for the software to be incorrect.

332 Event-Database Architecture for Computer Games

In practice, there are always subsets of data which are not well defined and ambig-
uous. And it is still possible for the software to be incorrect.

DICTIONARY (OF NAMES)

A list of definitions of the names for software data, procedures and modules used in
a project. In practice, there will not be a single list. The definitions will be spread
throughout the software code. You may need to ask the Programmers involved, what
each data or procedure name means.

CODING STANDARD

A document used in software companies. It outlines the Naming convention, and other
guidelines, to follow in order to produce software of a consistent, maintainable standard.

HIGH-LEVEL LANGUAGE

A programming language which tries to use natural language words and grammar in
order to be easy to understand and use.

BASIC, FORTRAN, COBOL, SQL

Beginners All-purpose Symbolic Instruction Code, Formula Translation, Common
Business Orientated Language, Structured Query Language. These are all examples
of high-level programming languages.

PDL

Program Design Language. A language for producing structured software designs,
created by Caine, Faber and Gordon Inc.

OR, AND

These are logic operators used in programming languages to test when either one of
two conditions (A or B) have become true. These are also used to test when both (A
and B) have become true.

*,/, ||, &&, sqrt()

These are all mathematical notations, software procedures and logic operators used
in the programming language ‘C’ and ‘C++’. These are two of the most popular pro-
gramming languages used in the Computer Games industry.

MILITARY CONTRACTS

Software Developers of components used in military applications have traditionally
been required to follow a recognised standard, for software engineering, in order to
get the contract.

333Glossary

SOFTWARE ENGINEERING AS A PROFESSION

Since software service providers do not claim to be members of a profession they
cannot be legally sued for malpractice.

ABSENCE OF LEADERSHIP

This is not the complete lack of leadership per se, but the management of software
production through a vicarious leadership or macromanagement.

CULT OF PERSONALITY AND A VICARIOUS LEADERSHIP

Two forms of leadership adopted in software production. See the chapter entitled

The Nature of the Beast

in the book

Event-Database Architecture for Computer Games: Volume 2, Game Design
and the Nature of the Beast.

FORWARD ENGINEERS AND REVERSE ENGINEERS

Two schools of thought which view software production as a science and as an art.
And as a result rely on Forward engineering or Reverse engineering in software
production. See the chapter entitled

Forward Engineers and Reverse Engineers

in the book

Event-Database Architecture for Computer Games: Volume 2, Game Design
and the Nature of the Beast.

THE MYTH OF SELF-DOCUMENTING CODE AND DATA

The belief that the written software code and data alone can convey the design
behind the software. See the subchapter entitled The Myth of Self-Documenting
Code and Data.

GOOD MEMORY (TO A LEADER)

A good memory helps a leader love the work and stops him or her hating it, through
the frustration of repeated mistakes. This gave rise to the idea of a philosopher-king
in antiquity.

334 Event-Database Architecture for Computer Games

EVENT-DATABASE ARCHITECTURE KNOWLEDGE TEST

A multiple choice test where each question asks you to select the meaning of
names of Events, Actions, Game Objects, Database Tables, Records and Fields
in the Game Database of the Event-Database Architecture. Where the correct
answers come from the definitions of these items in the data design. See the
chapter entitled

The Nature of the Beast

in the book

Event-Database Architecture for Computer Games: Volume 2, Game Design
and the Nature of the Beast.

ACADEMIC COURSE (ABOUT LEADERSHIP)

There are several post-graduate courses available which claim to teach students how
to become business leaders. The influences of these courses are very wide ranging.
But these courses have been oversold and produce false leaders. Many new leaders in
industry, who do not even attend these courses still, nonetheless, read the materials
from them, and put these into practice.

POST-MORTEM MEETING

A meeting conducted at the end of a software production process, by the staff
involved, to retrospectively examine the pros and cons. And to decide the lessons
to be learnt from the experience. The meeting comes from the academic study of
Project Management not software engineering.

What Is a Post-Mortem Meeting?
A post-mortem meeting is a formal discussion that occurs at the end of a project. In the
meeting, the project team discusses what went right and wrong and uses that informa-
tion to make process improvements for future projects.

Source: How to run a Post-mortem meeting (c) 2024. Smartsheet Inc

THIRD PARTY GAME TESTERS

A company (e.g. Universal Speaking Ltd.) that specialises in performing the func-
tion of the QA Department in the Computer Games industry including testing the
game at the end of the production process.

NARCISSISM

An excessive love or pre-occupation with yourself, which leads to a decay in your
ability to empathise with others.

335Glossary

PREVALENCE OF WOMEN

A recent research into the characteristics of the workplace, in high-technology
industries, found that the macho, competitive atmosphere was a barrier to women.

EVENT-DATABASE ARCHITECTURE PRODUCTIVITY FORMULA

A formula for measuring the productivity of any software production process by
inverting amount of waste produced. See the chapter entitled

Cause and Effect

in the book

Event-Database Architecture for Computer Games: Volume 2, Game Design
and the Nature of the Beast.

THE NATURE OF THE BEAST

A figure of speech which means a regrettable but inescapable characteristic.
For example, some would say it is the nature of the beast that the revenue

gained by taxing tobacco leads to many public health problems caused by
tobacco smoke. And the government has to then spend some of its revenue pro-
viding health care.

In psychology, the figure of speech resonates with a mental state known as cogni-
tive dissonance. This is defined as the mental discomfort a person feels when their
beliefs and actions are inconsistent and contradictory.

In the case of new apprentices in the Computer Games industry, on the one hand
they believe they love making computer games, they can make a career out of it and
they can give it their best effort. On the other hand their actions in the Software
Evolution Process used to make Computer Games are performed in the context of a
chaotic process whose outcome they cannot control. And as a result their best efforts
may not be emerge in the final outcome.

In philosophy, the figure of speech implies that in certain cases, you can only do
some good through some evil.

For example, some would say it is the nature of the beast that keeping peace
between nations entails being prepared to fight wars against those who violate the
peace.

This example hints at the possible origins of the figure of speech. Namely a bibli-
cal prophecy about a man, a politician, called The Beast. Who will come at the end
of the world, to fool mankind. He will create a one world government and in the
name of keeping the peace will fight many wars. And no one will be able to buy and
sell under this government without the ‘mark of the beast’.

This origin leads to another use of the figure of speech. Namely the use of the
Beast as a metaphor or mark of moral decay in literature. Like the moral decay at the
end of the world in the biblical prophecy. A good example of this is in the book Lord

336 Event-Database Architecture for Computer Games

of the Flies where the Beast is used as a metaphor of the moral decay that occurs
amongst a group of army cadets marooned on an island.

Going back to the case of new apprentices in the Computer Games industry, if
they believe they can produce their best effort, in a Software Evolution Process
which they find chaotic, then philosophical speaking this is a sign of moral decay.
Since you cannot do well or excel at that which you hate or causes you pain. This is
why the philosopher Socrates said in the book The Republic that a king must have a
good memory. Since he cannot do well that which he hates or causes him pain, and
after much effort, he finds he has made little progress because of a bad memory and
repeated mistakes.

Finally, the term nature of the beast implies that there is some regrettable deed
you need to do to achieve some greater good. Now philosophically, if after you (an
apprentice) have done the regrettable deed (i.e. taken part in a Software Evolution
Process), you have to keep repeating that regrettable deed to survive, then that deed
is no longer regrettable. It is just part of your character.

In the field of psychology, cognitive dissonance is described as the mental discom-
fort people feel when their beliefs and actions are inconsistent and contradictory,
ultimately encouraging some change (often either in their beliefs or actions) to align
better and reduce this dissonance.

Source: Congnitive Dissonance. Wikipedia. The Free Encyclopaedia. 2024

Fancy thinking the Beast was something you could hunt and kill! You knew, didn’t
you? I’m part of you? Close, close, close! I’m the reason why it’s no go? Why things
are what they are?

Source: Lord of the Flies © 1959, William Golding

RIGHT TO SILENCE

In English law, and in other countries, a person charged with a crime has
the right to remain silent before and during trial in order to avoid saying
anything incriminating. This is the basis of placing the burden of proof on the
prosecution.

The origins of the right to silence and the privilege against self-incrimination are not
entirely clear….the right and privilege emerged together during the religious and con-
stitutional struggles of the seventeenth century England. In particular, the right and
the privilege are commonly said to have originated in the abolition of the Court of Star
Chamber and the Court of High Commission in Ecclesiastical Causes. These courts
were highly unpopular, largely because they were used to suppress religious and polit-
ical dissent…the judges of both courts having the power to interrogate an accused
person on oath…This exposed the accused to what the High Court has described as
`the ‘cruel trilemma’ of punishment for refusal to testify, punishment for truthful tes-
timony or perjury….

Source: The Right to Silence: An Examination of the Issues © 1999,
The Parliament of Victoria, Australia

337Glossary

HUMAN RESOURCES

A department of an organisation responsible for the recruitment, payment and per-
sonal welfare of staff.

IWGB GAME WORKERS

A trade union established in 2019 for workers in the Computer Games industry.
It deals with many common issues in the industry such as overtime, sexism and
harassment. If you want to join the Computer Games industry, you should join this
union. They will help you face these common issues.

‘The Game Workers branch of the IWGB is a worker-led, democratic trade union
that represents and advocates for UK game workers’ rights.

We seek to increase the quality of life for all game workers by campaigning to:

•	 End the institutionalised practice of excessive/unpaid overtime
•	 Improve Diversity and Inclusion at all levels
•	 Inform workers of their rights and support those who are abused, harassed,

or need representation
•	 Secure a steady and fair wage for all

WHY DO WE NEED A UNION?

74% of game workers are not paid overtime, but 90% can be expected to work extra
hours. [1]

53% of game workers believe that their skillset could secure better wages and con-
ditions in another industry. [1]

45% of women feel they have or will at some stage encounter barriers to their
career progression because of their gender. [2]

45% of women have experienced some form of bullying or harassment whilst work-
ing in games or by being associated with the industry. [2]

Two thirds of games companies (worldwide) do not have mechanisms in place to
deal with harassment or abuse. [1]’

Source: We are the IWGB Game Workers (c) IWGB Game Workers
2020–2023. https://www.gameworkers.co.uk/

QUALITY ASSURANCE

In theory, a system which ensures that a company’s processes (as supposed to their
product) will meet all of the customer’s requirements and specifications. In practice,
software companies just apply two Quality Controls in the latter stages of produc-
tion, known as Alpha testing and Beta testing, and call it Quality Assurance or QA.

ARBITRATION SERVICE

A charity or a commercial company that mediates between two sides involved in an
industrial or employment dispute.

https://www.gameworkers.co.uk/

338 Event-Database Architecture for Computer Games

SUBSTITUTE FOR LEADERSHIP

In his 14 points for manufacturing quality goods, W. Edwards Deming suggested
that the use of annual appraisals, to measure and improve the performance of an
employee, was in effect a substitute for leadership.

TEAM LEADER

This position and title is given to a very experienced member of a team, developing
software, to denote his or her seniority. But the title is an oxymoron which reflects
the contradictions of this position.

339

Index

2D Animation Object, 42
2D Image Object, 42
3D Animation Object, 43
3D Model Object, 43

A

Abstraction, 38, 185, 187, 311
difficulties which those who rely on reverse

engineering have with, 200, 201, 328
Animated vertices, 120
Animation ID, 120
Armour class, 22
Artificial intelligence, 11, 12, 25, 185

line of sight, 76
pre-eminence in technical design of computer

games, 209
pre-eminence in the art of software

production, 218–221
relation to the myth of self-documenting

code, 252
with deep learning models or language

learning models in the architecture, 56
with neural networks, 50
with path finding, 47

Artificial neural network, 50
automatically gathering unbiased training

data, 94
back propagation, 51
deep learning model, 55, 56
flaws in back propagation, 54
forward propagation, 53
in the event-database architecture, 59
language learning model, 55, 56
relation to expensive graphics processors,

185, 312
Audio Projection, 90

B

Backwards Command, 16

C

Chromatic Projection, 90
Cult of personality and a vicarious leadership,

258, 259, 271, 274, 280, 289, 307, 333
army of delegates, 274
cult of personality approach to performance

reviews or self-appraisals, 285, 297
qualities of a natural leadership, 259

qualities of an unnatural leadership, 259
relation to a natural leadership, 258
relation to an unnatural leadership, 258
vicarious leadership approach to performance

reviews or self appraisals, 285, 299
void left by a vicarious leadership or absence

of leadership, 275, 289

D

Database, 15, 34, 106
abuse by database administrators using the

myth of self-documenting data,
252, 253

aid to optimising primary events, secondary
events and actions, 197

analysing the language of the staff, 180
as a dictionary, 180
as a high level tool for editing the game

design, 103, 213, 219, 221, 223
basic set theory, 194
excluding logic flags, state switches and data

offsets, 189
getting metrics to test scalability, 210
making consistent, 187–189
optimising, 191
relational database management systems or

RDBMS, 56, 76, 322
scalability, 193
small devices, 191, 254, 322
static and dynamic with respect to

photorealism, 88, 89
use to different members of staff, 205
visualisation, 164

Data design, 186, 319
as a high level tool for promoting natural

language and natural leadership,
204, 206, 217, 266, 270–272,
279, 282

making consistent, 187–189
optimising, 191
relation to event-database architecture

knowledge test, 257, 276, 300, 334
Deep Learning Model, 55
Design Patterns, 28, 202, 203, 254, 323, 324
Drop Command, 16

E

Escort Quest Handler Object, 105
Expensive Graphics Processors, 56,185, 312

340 Index

F

Failsafe, 31, 35, 311
difficulties which those who rely on reverse

engineering have with, 200, 201
Find Quest Handler Object, 104
Finite State Machine, 192, 253, 321
Forward engineering, 199

in relation to dialectic forms of
communication, 215

in relation to natural leadership or a cult of
personality, 256, 258, 267, 277, 284,
285, 287, 289, 298, 322, 323

in relation to the school of thought that
software production is a science, 199,
203–205, 206, 213, 215, 217, 221,
222, 254

in relation to the school of thought that
software production is an art, 201

Forwards Command, 16

G

Game Time ID, 121
Get Command, 16
Give Command, 16

H

Hacker, 222, 254, 330
Heartbeat Event, 36

I

Internal Database Host Query Custom Tool, 39
Internal Events Host Custom Tool, 181
Inverse Kinematic Physics, 68
Invisible 2D Point Object, 41
Invisible 3D Point Object, 42
Isometric Projection, 90

J

Jump Down Command, 16
Jump Up Command, 16

K

Kill Command, 16
Kill Quest Handler Object, 103

L

Language Learning Model, 55, 56
erroneous, 56, 185, 314
unbiased training data, 94

List Record, 188

Load Game Object, 133
Loaded Event, 36
Look Command, 16
LPC Code, 30
LPC Custom Tool, 181
LPmud, 1

advantages of the game design of
LPmud, 28

advantages of the software architecture of
LPmud, 29

comparison with event-database
architecture, 33

principes of the software architecture of
LPmud, 30

LPmud Data Design, 68, 79, 91, 106
as a dictionary, 180
entity-relationship diagrams, 165–169

M

Master Object, 29
Moved Event, 36

N

Neural Network Activation Function, 51
Neural Network Back Propagation, 51
Neural Network Back Propagation Adjust

Weights nnnn Layer D Neuron xx
Event, 62

Neural Network Back Propagation Adjust
Weights nnnn Layer Zyyyy
Neuron xx Event, 62

Neural Network Back Propagation Input
Losses nnnn Layer D Neuron xx
Event, 62

Neural Network Back Propagation Input
Losses nnnn Layer Zyyyy Neuron xx
Event, 62

Neural Network Back Propagation Output Losses
nnnn Layer D Neuron xx Event, 62

Neural Network Bias, 51
Neural Network Final Outputs, 50
Neural Network Forward Propagation, 53
Neural Network Forward Propagation Inputs

nnnn Layer D Neuron xx Event, 60
Neural Network Forward Propagation Inputs

nnnn Layer X Neuron xx Event, 60
Neural Network Forward Propagation Inputs

nnnn Layer Zyyyy Neuron xx
Event, 60

Neural Network Forward Propagation nnnn Fetch
Metrics From Game World Event, 60

Neural Network Forward Propagation nnnn Fetch
Metrics From Training Data Event, 60

Neural Network Forward Propagation Output
nnnn Layer D Neuron xx Event, 60

341Index

Neural Network Forward Propagation Output
nnnn Layer Zyyyy Neuron xx
Event, 60

Neural Network Forward Propagation Translate
Output nnnn Event, 60

Neural Network Initial Inputs, 50
Neural Network Neuron Input Weight, 51
Neural Network Neuron Output, 51
Neural Network Training Data, 51

O

Object Attacked Event, 35
Object Dead Event, 35
Object Destroyed Event, 35
Object Dropped Event, 35
Object Entered Event, 35
Object Exited Event, 35
Object Heard Event, 35
Object Heartbeat Event, 35
Object Initial Reset Event, 35
Object Inventory Event, 35
Object Looked Event, 35
Object Moved Event, 35
Object Pacified Event, 35
Object Periodic Reset Event, 35
Object Taken Event, 35
Object Unused Event, 35
Object Used Event, 35
Obsession with efficiency, 27, 224, 225, 227–229,

231, 254
myth of self documenting code and data, 232,

235, 236
Ordered software system, 194, 196, 198, 254, 322
Orthographic projection, 90
Owner Field, 183

P

Periodic Reset Event, 36
Perspective Projection, 90
Photorealism, 68, 82

expensive graphics processors, 186, 312
flaws in game worlds, 84–89, 316–318
limitations of power, 95, 96, 98–100

Physics Inverse Kinematics nnnn Bone yy xx
Angle Arm To Reach Target Event, 68

Physics Inverse Kinematics nnnn Bone yy xx
Angle Leg To Reach Target Event, 68

Physics Ragdoll nnnn Bone yy xx First Pass
Detect Forces On Bone Event, 71

Physics Ragdoll nnnn Bone yy xx First Pass
Generate Forces On Bone Event, 71

Physics Ragdoll nnnn Bone yy xx Second Pass
Detect Forces On Bone Event, 71

Physics Ragdoll nnnn Bone yy xx Second Pass
Generate Forces On Bone Event, 71

Physics Ragdoll nnnn Bone yy xx Third Pass
Resolve Forces On Bone Event, 71

Physics Vortex nnnn Particle yyyy Angular
Acceleration Event, 73

Physics Vortex nnnn Particle yyyy Collision
Event, 73

Physics Vortex nnnn Particle yyyy Spawn
Event, 73

Point Object Record, 41
Primary Neural Network Back Propagation nnnn

Event, 62
Primary Neural Network Forward Propagation

nnnn Event, 60
Primary Physics Inverse Kinematics nnnn

Event, 68
Primary Physics Ragdoll nnnn Event, 71
Primary Physics Vortex nnnn Acceleration

Event, 73
Primary Physics Vortex nnnn Spawn Event, 73
Primary Reflection Event, 100
Procedurally Generated Quest System, 103

Q

Quality Control, 2, 184
effects on the event-database architecture,

236
in the event-database architecture, 204
use of appraisals for, 285, 298, 299, 309

Quest Complete Event, 106
Quest Giver Object, 104
Quest Lost Object, 104
Quest Marker Objects, 103
Quest Prompt Object, 104
Quest Reward Event, 104
Quest Spline Object, 103
Quest Splines Complete Event, 103
Quest Splines Generator Object, 103
Quest Target Object, 104
Quest Waypoints Object, 103
Quit Command, 16

R

Ragdoll Physics, 68
Remove Command, 16
Reverse engineering, 199, 322

as a panacea, 201
creating a small band with superior

knowledge, 277
in assessing feasibility of software,

206, 208, 209
in relation to didactic forms of

communication, 215
in relation to hacks and hackers, 222
in relation to making a project

feasible, 211

342 Index

in relation to performance reviews and self
appraisals, 285, 287, 288, 300

in relation to the myth of self-documenting
code and data, 251

in relation to the school of thought that
software production is an art,
199–201, 206, 254

in relation to unnatural leaderships, 256, 258,
261, 268, 300

relationship to a form of research called
prototyping, 284

relationship with design principles and design
patterns, 202

Resurrect Command, 16

S

Save Game List Record, 162
Save Game Object, 133
Say Command, 16
Scalable and scalability, 192–194, 253, 321

cross platform, multi platform and false
scalability, 207, 208

getting metrics to measure scalability from
the architecture, 210

in relation to commercial game editors, 56
in relation to hardware rendering, 89
in relation to relational database management

systems, 56
in relation to software rendering, 89
pre-eminence to the school of thought that

relies on Forward engineering, 218
relationship to making software feasible, 207
time complexity and selecting scalable

algorithms, 215
Secondary Reflection Event, 100
Software architecture, 2, 185, 309

false software architectures used in computer
games industry, UML, 27, 28, 185, 311

false software architectures used in game
engines, design patterns, 202, 254,
323, 324

Software engineering, 179, 200, 225, 232, 254,
302, 307, 323

as a profession, 307, 333
false advanced software engineering, 236
in relation to the school of thought that

depend on Forward engineering, 200

in relation to the school of thought
that depend on Reverse
engineering, 224

Shout Command, 16
Stage Objects List Records, 124

T

Tell Command, 16
Testing, 179, 196

automated testing system, 293
due to an obsession with efficiency, 231
exhaustive testing, 274
false quality assurance, 301, 337
of game artists, 227
relation to a natural leadership, 273
relation to the school of thought which rely

on Forward engineering, 199, 203,
254, 322

relation to the school of thought which
rely on Reverse engineering, 198,
254, 322

third party game testers,
300, 334

Text ID, 129
Text Localization Record, 42
Text Object, 42
Textual Projection, 90
Turn Left Command, 16
Turn Right Command, 16

U

UML, 28, 185, 311
Unloaded Event, 36

V

Virtual Machine, 30
Vortex Physics, 72

W

Waypoint, 48, 49, 103–106, 133, 137,
185, 220, 311

Weapon Class, 22
Wear Command, 16
Wield Command, 16

	Cover
	Half Title
	Title Page
	Copyright Page
	Contents
	About the Author
	Introduction
	Chapter 1: LPmud Software Production Process
	1.1. STEP 1: LPmud Feasibility Study/Vertical Slice
	1.2. STEP 2: LPmud Game Design
	1.2.1. Settlements
	1.2.2. Buildings
	1.2.3. Mountainous Landscapes
	1.2.4. Treacherous Landscapes
	1.2.5. Non-Player Characters
	1.2.6. Player Characters
	1.2.7. Creatures
	1.2.8. Treasures
	1.2.9. Combat System

	1.3. STEP 3: LPmud Technical Design
	1.3.1. Rules for Generating the System of Events
	1.3.2. Rules for Generating the System of Game Objects
	1.3.3. Application: Visible and Invisible LPmud Game Objects
	1.3.4. Application: AI with Path Finding
	1.3.5. Application: AI with Neural Networks
	1.3.6. Application: Physics
	1.3.7. Application: Graphics
	1.3.8. Application: Procedurally Generated Quests

	1.4. STEP 4: LPmud Data Design
	1.4.1. Primary Events Table
	1.4.2. Secondary Events Table
	1.4.3. Sound Speaker Secondary Events Table
	1.4.4. Priority Events Table
	1.4.5. Events History Table
	1.4.6. 2D Polygons Table
	1.4.7. 3D Models Table
	1.4.8. Textures Table
	1.4.9. Texture Coordinates or UV Table
	1.4.10. Materials Table
	1.4.11. Projected Shapes Table
	1.4.12. Sound Microphone Table
	1.4.13. Sound Stream Table
	1.4.14. Animated Vertices Table
	1.4.15. Game Time Table
	1.4.16. Delayed Events Table
	1.4.17. Residents or Loaded Records Table
	1.4.18. Absents or Unloaded Records Table
	1.4.19. Objects Loaded Table
	1.4.20. 2D Graphics Lists Table
	1.4.21. 3D Graphics Lists Table
	1.4.22. Projected Lists Table
	1.4.23. Sounds List Table
	1.4.24. 2D Physics Lists Table
	1.4.25. 3D Physics Lists Table
	1.4.26. 2D Camera Lists Table
	1.4.27. 3D Camera Lists Table
	1.4.28. Device Group Table
	1.4.29. Device Sequence Primary Events Table
	1.4.30. Text Localisations Table
	1.4.31. Errors Table
	1.4.32. Invisible 2D Point Objects Table
	1.4.33. Invisible 3D Point Objects Table
	1.4.34. Master Object Table
	1.4.35. Text Objects Table
	1.4.36. 2D Image Objects Table
	1.4.37. 2D Animation Objects Table
	1.4.38. 2D Player Objects Table
	1.4.39. 3D Image Objects Table
	1.4.40. 3D Animation Objects Table
	1.4.41. 3D Player Objects Table
	1.4.42. 2D Camera Objects Table
	1.4.43. 3D Camera Objects Table
	1.4.44. Database Checksum Table
	1.4.45. Database Tag Table
	1.4.46. Database Monitor Table
	1.4.47. Database Log Table
	1.4.48. Visualising the Database
	1.4.49. Enumerating the Language of the Production Process

	1.5. STEP 5: LPmud Tools Design

	Chapter 2: Consistent Data Design
	Chapter 3: Optimising the Results
	3.1. Forward Engineers and Reverse Engineers
	3.2. Diagnosis and Prognosis
	3.3. The Didactic and the Dialectic
	3.4. Software Artists and Software Engineers
	3.5. Obsession with Efficiency
	3.6. Division and Consistency
	3.7. The Myth of Self-Documenting Code and Data
	3.8. Self-Documenting User Manuals
	3.9. Self-Explanatory Names
	3.10. Self-Checking Data
	3.11. Natural Language and Programming Language

	Chapter 4: The Nature of the Beast
	4.1. The Marriage of the Beast
	4.2. The Time of the Beast
	4.3. The Temple of the Beast
	4.3.1. Tacit Approval and Disavowal
	4.3.2. Explicit Approval in Performance Reviews or Appraisals
	4.3.3. Self-Justification through the Benefits
	4.3.4. Explicit Disavowal in Performance Reviews or Appraisals
	4.3.5. Self Incrimination in Self-Appraisals
	4.3.6. The Right to Silence
	4.3.7. Human Resource and Human Beings
	4.3.8. Unions and Performance Reviews or Appraisals
	4.3.9. Natural Leadership: A Manager of Processes
	4.3.10. Unnatural Leadership: A Manager of Defects

	Chapter 5: Cause and Effect
	Chapter 6: Glossary
	Index

